Cho tam giác ABC có A H ⊥ B C , B A H ^ = 2 C ^ . Tia phân giác của góc cắt AC tại E . Tia phân giác của góc BAH cắt BE ở I . Khi đó tam giác AIE là tam giác
A. Vuông cân tại I
B. Vuông cân tại E
C. Vuông cân tại A
D. Cân tại I
Cho tam giác ABC có độ dài các cạnh là a, b, c. Cho các chiều cao tương ứng là ha, hb, hc. Biết rằng a+ha= b+hb = c +hc. CMR tam giác ABC đều
cho tam giác ABC vuông tại A (AB<AC) đường cao AH. Đặt BC=a, CA=b, AB=c, AH=h. cm tam giác có các cạnh a-h, b-c,h là 1 tam giác vuông
dùng Pitago đảo thử từng cặp 1 thôi:v
ta có: \(\left(b-c\right)^2+h^2=b^2+c^2-2bc+h^2\)(1)
vì tam giác ABC vuông ở A có đường cao AH nên \(a^2=b^2+c^2\)và\(AB.AB=AH.BC=2S\)hay\(b.c=a.h\)
\(\Rightarrow b^2+c^2-2bc+h^2=a^2-2ah+h^2=\left(a-h\right)^2\)
cho tam giác ABC có các cạnh a,b,c và các đường cao tương ứng ha,hb,hc . biết a + b = 10 và các đường cao ha,hb,hc tỉ lệ với 2,3,4 . tính chu vi tam giác ABC
trong mạt phẳng Oxy cho tam giác ABC có A(-1,0) , B(1,2) , C(5,-2) : a) hỏi tam giác ABC là tam giác gì ? Tính diện tích tam giác ABC ; b) gọi H là chân đường cao kẻ từ B của tam giác ABC . Tìm tọa độ của H .
\(AB^2=\left(1+1\right)^2+\left(2-0\right)^2=8\)
\(AC^2=\left(5+1\right)^2+\left(-2-0\right)^2=39\)
\(BC^2=\left(5-1\right)^2+\left(-2-2\right)^2=32\)
Cạnh lớn nhất là AC, ta có:
AC2 < AB2 + BC2
=> Tam giác ABC nhọn
Diện tích ABC= dt(CDEF) - dt(CDB) - dt(CFA) - dt(ABE)
= 5.4 - 4.4/2 - 5.1/2 - 3.1/2
= 8
Gọi H(x,y), ta có BH vuông góc với AC => \(\overrightarrow{BH}.\overrightarrow{AC}=0\) => (x - 1).(5-0) + (y - 2)(-2 +1) = 0
=> 5x - y = 3 (1)
Phương trình đt AC là: \(\frac{y+1}{-2+1}=\frac{x-0}{5-0}\) => 5y + x = -5
Vì H thuộc AC nên 5y + x = -5 (2)
Từ (1) và (2), giải hệ pt ta có: x =5/13 và y = -14/13
Vậy H(5/13; -14/13)
AB2=(1+1)2+(2−0)2=8
AC2=(5+1)2+(−2−0)2=39
BC2=(5−1)2+(−2−2)2=32
Cạnh lớn nhất là AC, ta có:
AC2 < AB2 + BC2
=> Tam giác ABC nhọn
Diện tích ABC= dt(CDEF) - dt(CDB) - dt(CFA) - dt(ABE)
= 5.4 - 4.4/2 - 5.1/2 - 3.1/2
= 8
Gọi H(x,y), ta có BH vuông góc với AC => BH−→−−.AC−→−−=0 => (x - 1).(5-0) + (y - 2)(-2 +1) = 0
=> 5x - y = 3 (1)
Phương trình đt AC là: y+1−2+1=x−05−0 => 5y + x = -5
Vì H thuộc AC nên 5y + x = -5 (2)
Từ (1) và (2), giải hệ pt ta có: x =5/13 và y = -14/13
Vậy H(5/13; -14/13)
Cho tam giác ABC vuông tại A có góc B=60 °. Tia phân giác của góc ABCcho tam giác abc vuông tại a có góc b = 60 độ . tia phân giác của góc b cắt ac tại e , kẻ eh vuông góc đc tại h a) chứng minh tam giác abe = tam giác hbe b) hb=hc C) từ H kẻ đường thẳng song song với BE cắt AC ở K .c/m🔺AHK là tam giác đều d) gọi I là giao điểm của BA và HE. Chúng minh IE>EH
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
b: Xét ΔEBC có góc EBC=góc ECB
nên ΔEBC cân tại E
mà EH là đường cao
nên H là trung điểm của BC
=>HB=HC
d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEI=góc HEC
=>ΔEAI=ΔEHC
=>EI=EC>EH
Cho tam giác ABC có A(3;1) B(2,6) C(4;-1) a.Tính chứ vi tam giác ABC B.Tính góc A C.Tìm toạ độ trực tâm H của tam giác ABC.
a: A(3;1); B(2;6); C(4;-1)
\(AB=\sqrt{\left(2-3\right)^2+\left(6-1\right)^2}=\sqrt{5^2+1^2}=\sqrt{26}\)
\(AC=\sqrt{\left(4-3\right)^2+\left(-1-1\right)^2}=\sqrt{2^2+1^2}=\sqrt{5}\)
\(BC=\sqrt{\left(4-2\right)^2+\left(-1-6\right)^2}=\sqrt{2^2+7^2}=\sqrt{53}\)
Chu vi tam giác ABC là:
\(C_{ABC}=\sqrt{26}+\sqrt{5}+\sqrt{53}\left(đvđd\right)\)
b: Xét ΔABC có
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{26+5-53}{2\cdot\sqrt{26\cdot5}}\simeq-0,96\)
=>\(\widehat{A}\simeq165^0\)
c: Gọi H(x,y) là trực tâm của ΔABC
\(\overrightarrow{AH}=\left(x-3;y-1\right)\)
\(\overrightarrow{BH}=\left(x-2;y-6\right)\)
\(\overrightarrow{BC}=\left(2;-7\right);\overrightarrow{AC}=\left(1;-2\right)\)
H là trực tâm nên ta có: AH\(\perp\)BC và BH\(\perp\)AC
=>\(\left\{{}\begin{matrix}\overrightarrow{AH}\cdot\overrightarrow{BC}=0\\\overrightarrow{BH}\cdot\overrightarrow{AC}=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\left(x-3\right)+\left(-7\right)\left(y-1\right)=0\\1\left(x-2\right)+\left(-2\right)\left(y-6\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-6-7y+7=0\\x-2-2y+12=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-7y=-1\\x-2y=-10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-7y=-1\\2x-4y=-20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3y=-1+20=19\\x-2y=-10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{19}{3}\\x=-10+2y=-10-\dfrac{38}{3}=-\dfrac{68}{3}\end{matrix}\right.\)
Cho tam giác ABC có góc A= 60 độ, trực tâm H . Gọi M là điểm đối xứng với H qua BC
a, C/M tam giác BHC = tam giác BMC
b, Tính BMC
a) Vì M đối xứng với H qua BC nên BC là đường trung trực của MH
Suy ra: BH=BM và CH=CM
Xét ΔBHC và ΔBMC có
BH=BM(cmt)
CH=CM(cmt)
BC chung
Do đó: ΔBHC=ΔBMC(c-c-c)
Cho tam giác ABC. Vẽ trực tâm H của tam giác ABC và nhận xét vị trí của nó trong các trường hợp sau:
a) Tam giác ABC nhọn;
b) Tam giác ABC vuông tại A;
c) Tam giác ABC có góc A tù.
a)
Nhận xét: H là một điểm nằm trong tam giác ABC.
b)
Nhận xét: H trùng với đỉnh A của tam giác ABC.
c)
Nhận xét: H nằm ngoài tam giác ABC.
Cho tam giác ABC có A( -1; 3) ; B( -2; 0) và C( 5;1). Trực tâm H của tam giác ABC có toạ độ là:
A. (3 ; -1)
B. (-1 ; 3)
C. (2 ; -1)
D. (2 ; -3)
Ta có:
Suy ra tam giác ABC vuông tại A do đó trực tâm H trùng với A
Vậy H( -1 ; 3)
Chọn B.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-3;0), B(3;0) và C(2;6). Gọi H(a; b) là trực tâm của tam giác ABC. Tính 6ab
A. 10
B. 5 3
C. 60
D. 6