Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 12 2017 lúc 7:17

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 2 2018 lúc 14:42

Đáp án B

Kẻ IH ⊥ BC. Ta có: 

Mà 

Dễ thấy góc giữa 2 mặt phẳng (SBC) và (ABCD) là góc SJI, có: 

Vậy 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 7 2017 lúc 2:07

Đáp án B

Kẻ  I H ⊥ B C   . Ta có S I B C = S A B C D − S A B I − S C D I = 3 2 a 2  

Mà B C = A D 2 + A B − C D 2 = 5 a

⇒ I H = 3 5 5 a

Dễ thấy góc giữa 2 mặt phẳng S B C  và A B C D  là góc SJI, có S I = 3 V A B C D S A B C D = 3 15 5 a .

Vậy tan S I J = S I I H = 3 ⇒ S I J ^ = 60 0 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 2 2017 lúc 3:33

Đáp án là A

Tính được:   I B = a 5 ; I C = a 2 ;   B C = a 5 ;

S A B C D = 3 a 2 ; I K = 3 a 5 ; ​​  S I = 3 a 15 5

Vậy:  V S . A B C D = 1 3 S I . S A B C D = 3 a 3 15 5 .

Hoàng Thị Tâm
Xem chi tiết
Nguyễn Bảo Trân
2 tháng 4 2016 lúc 11:48

S D C I A K B

\(\begin{cases}\left(SIB\right)\perp\left(ABCD\right)\\\left(SIC\right)\perp\left(ABCD\right)\end{cases}\) \(\Rightarrow SI\perp\left(ABCD\right)\)

Kẻ \(IK\perp BC\left(K\in BC\right)\Rightarrow BC\perp\left(SIK\right)\)\(\Rightarrow\widehat{SKI}=60^0\)

Diện tích hình thang ABCD : \(S_{ABCD}=3a^2\)

Tổng diện tích các tam giá ABI và CDI bằng \(\frac{3a^2}{2}\) Suy ra \(S_{\Delta IBC}=\frac{3a^2}{2}\)

\(BC=\sqrt{\left(AB-CD\right)^2+AD^2}=a\sqrt{5}\)

\(\Rightarrow IK=\frac{2S_{\Delta IBC}}{BC}=\frac{3\sqrt{5}a}{5}\)

\(\Rightarrow SI=IK.\tan\widehat{SKI}=\frac{3\sqrt{15}a}{5}\)

Thể tích của khối chóp S.ABCD : \(V=\frac{1}{3}S_{ABCD}.SI=\frac{3\sqrt{15}a^2}{5}\)

 

Mộc Nhi
Xem chi tiết
Nguyen Thi Thu ha
1 tháng 2 2016 lúc 10:43

vì (SBI) và (SCI) cùng vuông góc với( ABCD) nên SI vuông với (ABCD) ,ke Az song song với SI và chọn gốc tọa độ tại A

Buddy
Xem chi tiết
Kiều Sơn Tùng
22 tháng 9 2023 lúc 15:24

\(\left. \begin{array}{l}\left( {SBI} \right) \bot \left( {ABCD} \right)\\\left( {SCI} \right) \bot \left( {ABCD} \right)\\\left( {SBI} \right) \cap \left( {SCI} \right) = SI\end{array} \right\} \Rightarrow SI \bot \left( {ABCD} \right)\)

Kẻ \(IH \bot BC\left( {H \in BC} \right)\)

\(SI \bot \left( {ABCD} \right) \Rightarrow SI \bot BC\)

\( \Rightarrow BC \bot \left( {SIH} \right) \Rightarrow BC \bot SH\)

Vậy \(\widehat {AHI}\) là góc nhị diện \(\left[ {S,BC,A} \right]\)\( \Rightarrow \widehat {AHI} = {60^ \circ }\)

\(\begin{array}{l}{S_{ABC{\rm{D}}}} = \frac{1}{2}\left( {AB + C{\rm{D}}} \right).A{\rm{D}} = 3{a^2}\\AI = I{\rm{D}} = \frac{1}{2}A{\rm{D}} = a\\{S_{AIB}} = \frac{1}{2}AB.AI = {a^2},{S_{CI{\rm{D}}}} = \frac{1}{2}C{\rm{D}}.I{\rm{D}} = \frac{{{a^2}}}{2}\\ \Rightarrow {S_{BIC}} = {S_{ABC{\rm{D}}}} - {S_{AIB}} - {S_{CI{\rm{D}}}} = \frac{{3{a^2}}}{2}\end{array}\)

Gọi \(M\) là trung điểm của \(AB\)

\(\begin{array}{l} \Rightarrow BM = \frac{1}{2}AB = a,CM = AD = 2a \Rightarrow BC = \sqrt {B{M^2} + C{M^2}}  = a\sqrt 5 \\ \Rightarrow IH = \frac{{2{{\rm{S}}_{BIC}}}}{{BC}} = \frac{{3a\sqrt 5 }}{5} \Rightarrow SI = IH.\tan \widehat {SHI} = \frac{{3a\sqrt {15} }}{5}\end{array}\)

\({V_{S.ABC{\rm{D}}}} = \frac{1}{3}{S_{ABC{\rm{D}}}}.SI = \frac{{3{a^3}\sqrt {15} }}{5}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 7 2018 lúc 10:58

Đáp án B

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 4 2018 lúc 17:23

Đáp án C.