Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Văn Tuần
Xem chi tiết
Akai Haruma
6 tháng 1 2023 lúc 19:58

Lời giải:

Sử dụng BĐT sau:

Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:

$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$

$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow A\geq 4+0=4$

Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$

Hay khi $x=2020$

Akai Haruma
28 tháng 1 2023 lúc 11:39

@Vũ Văn Tuần:

Để biết vì sao $|a|+|b|\geq |a+b|$ đạt dấu "=" khi $ab\geq 0$ thì bạn đi chứng minh BĐT này thôi.

Xét các TH sau:

TH1: Ít nhất 1 trong 2 số bằng 0. Không mất tính tổng quát giả sử $a=0$. Khi đó: $|a|+|b|=|b|=|b+0|=|a+b|$

TH2: $a,b$ đều khác 0. Xét các TH nhỏ hơn:

TH2.1: $a,b$ cùng dương kéo theo $a+b$ dương. Khi đó:
$|a|=a; |b|=b; |a+b|=a+b$

$\Rightarrow |a|+|b|=|a+b|$

TH2.2: $a,b$ cùng âm thì kéo theo $a+b<0$ Khi đó:
$|a|=-a; |b|=-b; |a+b|=-(a+b)$
$\Rightarrow |a|+|b|=-a+(-b)=-(a+b)=|a+b|$

TH2.3: $a,b$ khác dấu. Không mất tính tổng quát giả sử $a$ dương $b$ âm.

$\Rightarrow |a|=a; |b|=-b$

Nếu $a+b\geq 0$ thì $|a+b|=a+b$

$\Rightarrow |a|+|b|-|a+b|=a+(-b)-(a+b)=-2b>0$ do $b<0$

$\Rightarrow |a|+|b|> |a+b|$

Nếu $a+b<0$ thì $|a+b|=-(a+b)$

$\Rightarrow |a|+|b|-|a+b|=a+(-b)--(a+b)=a+(-b)+a+b=2a> 0$ do $a>0$

$\Rightarrow |a|+|b|> |a+b|$ 

Từ các TH đã xét ta suy ra $|a|+|b|\geq |a+b|$

Dấu "=" xảy ra khi $a,b$ cùng dương, $a,b$ cùng âm hoặc ít nhất 1 trong 2 số $a,b$ bằng $0$

Tức là $ab\geq 0$

nguyen thi thu huong
Xem chi tiết
Trà My Nguyễn Thị
Xem chi tiết
Thắng Nguyễn
28 tháng 4 2016 lúc 22:27

ê hoàng tử mt đừng chép bài tau chứ

ko bít hèn à
 

Thắng Nguyễn
28 tháng 4 2016 lúc 22:16

đơn giản ý mà

Amin=2016 khi x=4 hoặc 2020
 

Trà My Nguyễn Thị
28 tháng 4 2016 lúc 22:24

nhưng mik ko biết trình bày

Nguyễn Văn Tuấn
Xem chi tiết
tth_new
17 tháng 11 2018 lúc 6:10

Do \(\left|a\right|=\left|-a\right|\) nên:

\( A=\left|x-2008\right|+\left|x-2020\right|\)

\(=\left|x-2008\right|+\left|2020-x\right|\)

\(\ge\left|x-2008+2020-x\right|=12\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-2008\right)\left(2020-x\right)\ge0\)

hay \(\orbr{\begin{cases}x-2008\ge0\\2020-x\ge0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\ge2008\\x\le2020\end{cases}\Leftrightarrow2008\le}x\le2020\)

tth_new
17 tháng 11 2018 lúc 6:11

Thêm xíu:

Vậy \(A_{min}=12\Leftrightarrow2008\le x\le2020\)

Kelly
17 tháng 11 2018 lúc 17:24

\(A=\left|x-2008\right|+\left|x-2020\right|\)

\(\Rightarrow A=\left|x-2008\right|+\left|-x+2020\right|\ge\left|x-2008-x+2020\right|=12\)

dấu = xảy ra khi \(\left(x-2008\right).\left(-x+2020\right)\ge0\)

\(\Rightarrow2018\le x\le2020\)

vậy min A=12 khi và chỉ khi \(2018\le x\le2020\)

D-low_Beatbox
Xem chi tiết
Trên con đường thành côn...
16 tháng 7 2021 lúc 14:02

undefined

Lạc Chỉ
Xem chi tiết
Edogawa Conan
25 tháng 9 2019 lúc 22:13

Ta có:

a) A = |x - 2| + |x - 4| + 2017|

=> A = |x - 2| + |4 - x| + 2017 \(\ge\)|x - 2 + 4 - x| + 2017 = |2| + 2017=2019

Dấu "=" xảy ra <=> (x - 2)(4 - x) \(\ge\)0

<=> 2 \(\le\)\(\le\)4

Vậy MinA = 2019 <=> 2 \(\le\)\(\)4

b) Ta có: B = |2019 - x| + |2020 - x|

=> B = |x - 2019| + |2020 - x| \(\ge\)|x - 2019 + 2020 - x| = |1| =  1

Dấu "=" xảy ra <=> (x - 2019)(2020 - x) \(\ge\)0

<=> 2019 \(\le\)\(\le\)2020

Vậy MinB = 1 <=> 2019 \(\le\)\(\le\)2020

Sabofans
25 tháng 9 2019 lúc 22:26

ta có 

        /x-2/> hoặc= x-2

       /x-4/= /4-x/> hoặc=4-x      

=> /x-2/+/x-4/+2017> hoặc= (x-2)+(4-x)+2017=2019

           hay A> hoặc= 2019

           => GTNN của A là 2019

b,

       Vì /2019-x/ > hoặc= 2019-x

            /2020-x/=/x-2020/> hoặc=x-2020

      =>/2019-x/+/2020-x/>hoặc=(2019-x)+(x-2020)=-1

         Hay B> hoặc=-1

               =>B=1

Lạc Chỉ
Xem chi tiết
Nguyễn Thùy Trang
3 tháng 11 2019 lúc 20:51

 Ta có : \(\left|x-2019\right|\ge x-2019\). Dấu "=" khi \(x-2019\ge0\)

             \(\left|x-2020\right|=\)\(\left|2020-x\right|\ge2020-x\).Dấu "=" khi \(2020-x\ge0\)

=> \(\left|x-2019\right|+\left|2020-x\right|\)\(\ge x-2019+2020-x\)

=> \(\left|x-2019\right|+\left|x-2020\right|+2\)\(\ge3\)

hay \(A\ge3\)

\(MinA=3\Leftrightarrow\)\(\hept{\begin{cases}x-2019\ge0\\2020-x\ge0\end{cases}}\)\(\Leftrightarrow2019\le x\le2020\)

Khách vãng lai đã xóa
Ngân Thanh
Xem chi tiết
Minnie_YM
Xem chi tiết