Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Nguyen
Xem chi tiết
HT.Phong (9A5)
28 tháng 3 2023 lúc 5:53

 

Xét △AMB và △ANC ta có:

AM=AN ( Vì M,N lần lượt là trung điểm của 2 cạnh AB, AC)

\(\widehat{A}\) là góc chung

AB=AC (Vì là hai cạnh bên trong tam giác cân)

\(\Rightarrow\Delta AMB=\Delta ANC\left(c-g-c\right)\)

\(\Rightarrow BM=CN\) (hai cạnh tương ứng) 

 

Nguyễn Lê Phước Thịnh
27 tháng 3 2023 lúc 23:21

Xét ΔAMB và ΔANC có

AM=AN

góc A chug

AB=AC
=>ΔAMB=ΔANC

=>BM=CN

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 8 2017 lúc 11:01

Đinh Dương	Sam
4 tháng 1 2023 lúc 21:25

dạ cảm ơn ạ

gogeta sjj 4
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2023 lúc 9:11

Xét ΔABM và ΔACN có

AB=AC
góc BAM chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

『Kuroba ム Tsuki Ryoo...
14 tháng 5 2023 lúc 9:26

Mình xin phép sửa đề:

Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G

Chứng minh tam giác ABN = tam giác ACN , từ đó suy ra BM=CN

`------`

\(\text{GT | AB = AC, }\widehat{\text{B}}=\widehat{\text{C}}\)

\(\text{CM | BM = CN}\)

\(\text{BM là đường trung tuyến}\)

`->`\(\text{MA = MC (1)}\)

\(\text{CN là đường trung tuyến}\)

`->`\(\text{NA = NB (2)}\)

`\Delta ABC` cân tại A

`->`\(\widehat{\text{B}}=\widehat{\text{C}}\text{, AB = AC (3)}\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

`->`\(\text{NA = NB = MA = MC}\)

Xét `\Delta ABM` và `\Delta ACN`:

\(\left\{{}\begin{matrix}\text{BM = CN}\\\widehat{\text{B}}=\widehat{\text{C}}\\\text{BC chung}\end{matrix}\right.\)

`=> \Delta ABM = \Delta ACN (c-g-c)`

`->`\(\text{BM = CN (2 cạnh tương ứng).}\)

loading...

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
21 tháng 9 2023 lúc 14:03

Tham khảo:

Gọi D là giao điểm của CN và BM

\( \Rightarrow \) D là trọng tâm tam giác ABC

\( \Rightarrow CD = \dfrac{2}{3}CN = BD = \dfrac{2}{3}BM\) ( do BM = CN )

\( \Rightarrow \) tam giác DBC cân tại D do BD = CD

\( \Rightarrow \) \(\widehat {DBC} = \widehat {DCB}\)(2 góc đáy trong tam giác cân)  (1)

Xét \(\Delta NDB\) và \(\Delta MDC\) có :

BD = CD

\(\widehat {NDB} = \widehat {MDC}\) (2 góc đối đỉnh)

ND = DM (do cùng \( = \dfrac{1}{3}CN = \dfrac{1}{3}BM\) (tính chất của trung trực đi qua trọng tâm tam giác ))

 \( \Rightarrow \Delta NDB=\Delta MDC\) (c.g.c)

\( \Rightarrow \,\widehat {NBD} = \widehat {MCD}\)(2 góc tương ứng) (2)

Từ (1) và (2) \( \Rightarrow \widehat {ABC} = \widehat {ACB}\) do \(\widehat {ABC} = \widehat {NBD} + \widehat {DBC}\) và \(\widehat {ACB} = \widehat {MCD} + \widehat {DCB}\)

\( \Rightarrow \Delta ABC\) cân tại A (do 2 góc bằng nhau)

Tran Bao
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2022 lúc 10:45

a: Xét ΔABC có

BM là đường trung tuyến

CN là đường trung tuyến

BM cắt CN tại G

DO đó:G là trọng tâm

=>BG=2/3BM; CG=2/3CN

\(BM+CN=\dfrac{2}{3}BG+\dfrac{2}{3}CG>\dfrac{2}{3}BC\)

b: BM=CN nên GB=GC

mà AB=AC
nên AG là đường trung trực của BC

=>AG\(\perp\)BC

Future PlantsTM
Xem chi tiết
Kinomoto Sakura
14 tháng 3 2021 lúc 16:28

undefined

BM = 3/2 BG, CN = 3/2 CG

Ta có BM + CN = 3/2 (BG + CG) > 3/2. BC = 3/2 x 12 = 18

 

 

 

Vy Do
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
21 tháng 9 2023 lúc 14:03

Tham khảo:

a) Vì tam giác ABC cân tại A theo giả thiết. BM và CN là 2 đường trung tuyến nên M, N là 2 trung điểm của AC, AB.

Vì AB = AC (tính chất tam giác cân)

\( \Rightarrow \dfrac{{AB}}{2} = \dfrac{{AC}}{2} = AN = AM\)

Xét tam giác AMB và tam giác ANC ta có :

AM = AN (cmt)

AB = AC

Góc A chung

\( \Rightarrow \Delta AMB =\Delta ANC\)

\( \Rightarrow BM = CN\) ( 2 cạnh tương ứng )

b) Vì BM và CN là các đường trung tuyến

Mà I là giao điểm của BM và CN

\( \Rightarrow \) I là trọng tâm của tam giác ABC

\( \Rightarrow \) AI là đường trung tuyến của tam giác ABC hay AH đường là trung tuyến của tam giác ABC

\( \Rightarrow \) H là trung điểm của BC

Đinh Dương	Sam
Xem chi tiết