Biến đổi các biểu thức hữu tỉ thành phân thức:
x x - 1 - x + 1 x x x + 1 - x - 1 x
Biến đổi các biểu thức hữu tỉ thành phân thức:
5 4 - 5 x + 1 9 - x 2 x 2 + 2 x + 1
Biến đổi các biểu thức hữu tỉ thành phân thức :
a) \(\dfrac{\dfrac{x}{x-1}-\dfrac{x+1}{x}}{\dfrac{x}{x+1}-\dfrac{x-1}{x}}\)
b) \(\dfrac{\dfrac{5}{4}-\dfrac{5}{x+1}}{\dfrac{9-x^2}{x^2+2x+1}}\)
\(A=\dfrac{\dfrac{x}{x-1}-\dfrac{x+1}{x}}{\dfrac{x}{x+1}-\dfrac{x-1}{x}}=\dfrac{\dfrac{x^2-\left(x^2-1\right)}{x\left(x-1\right)}}{\dfrac{x^2-\left(x^2-1\right)}{x\left(x+1\right)}}=\dfrac{\dfrac{1}{x\left(x-1\right)}}{\dfrac{1}{x\left(x+1\right)}}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{0;\pm1\right\}\\A=\dfrac{x+1}{x-1}\end{matrix}\right.\)
Bài 2: a) Tính \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\)
b) Biến đổi biểu thức hữu tỉ sau thành một phân tử \(2+\dfrac{2}{2+\dfrac{2}{x}}\)
Biến đổi các biểu thức hữu tỉ thành phân thức:
a) \(\frac{\frac{x}{x-1}-\frac{x+1}{x}}{\frac{x}{x+1}-\frac{x-1}{x}}\)
b) \(\frac{\frac{5}{4}-\frac{5}{x+1}}{\frac{9-x^2}{x^2+2x+1}}\)
Cảm ơn nhé =))
Biến đổi các biểu thức sau thành phân thức: x - 1 x 2 1 + 1 x + 1 x 2
Biến đổi biểu thức sau thành phân thức: A=1+1/x
Biến đổi biểu thức A = 1 + 1 x x - 1 x thành một phân thức
1)Giả sử các biểu thức đều có nghĩa: Biến đổi phân thức 8x^2-8x+2/(4x-2)(15-x)thành một phân thức bằng nó và có tử thức là A=1-2x
\(\dfrac{8x^2-8x+2}{\left(4x-2\right)\left(15-x\right)}=\dfrac{2\left(4x^2-4x+1\right)}{2\left(2x-1\right)\left(15-x\right)}\\ =\dfrac{\left(2x-1\right)^2}{\left(2x-1\right)\left(15-x\right)}=\dfrac{2x-1}{15-x}=\dfrac{1-2x}{x-15}\\ =\dfrac{A}{x-15}\)
Biến đổi biểu thức sau thành một phân thức B= 1+2/x-1/1+2x/x^2+1
\(B=\frac{1+\frac{2}{x-1}}{1+\frac{2x}{x^2+1}}\)
\(B=\left(1+\frac{2}{x-1}\right):\left(1+\frac{2x}{x^2+1}\right)\)
\(=\left(\frac{x-1}{x-1}+\frac{2}{x-1}\right):\left(\frac{x^2+1}{x^2+1}+\frac{2x}{x^2+1}\right)\)
\(=\frac{x-1+2}{x-1}:\frac{x^2+1+2x}{x^2+1}\)
\(=\frac{x+1}{x-1}:\frac{\left(x+1\right)^2}{x^2+1}\)
\(=\frac{x+1}{x-1}.\frac{x^2+1}{\left(x+1\right)^2}\)
\(=\frac{x^2+1}{\left(x-1\right)\left(x+1\right)}\)
Chúc bạn học tốt !!!