Trong mỗi trường hợp sau hãy tìm phân thức Q thỏa mãn điều kiện : 1 x 2 + x + 1 - Q = 1 x - x 2 + x 2 + 2 x x 3 + 1
Trong mỗi trường hợp sau hãy tìm phân thức Q thỏa mãn điều kiện: 2 x - 6 x 3 - 3 x 2 - x + 3 + Q = 6 x - 3 - 2 x 2 1 - x 2
Trong mỗi trường hợp sau hãy tìm phân thức Q thỏa mãn điều kiện :
a) \(\dfrac{1}{x^2+x+1}-Q=\dfrac{1}{x-x^2}+\dfrac{x^2+2x}{x^3-1}\)
b) \(\dfrac{2x-6}{x^3-3x^2-x+3}+Q=\dfrac{6}{x-3}-\dfrac{2x^2}{1-x^2}\)
Trong mỗi trường hợp sau hãy tìm hai đa thức P và Q thỏa mãn đẳng thức: x + 2 . P x 2 - 1 = x - 2 . Q x 2 - 2 x + 1
x + 2 . P x 2 - 1 = x - 2 . Q x 2 - 2 x + 1
⇒ x + 2 . P . x 2 - 2 x + 1 = x 2 - 1 x - 2 . Q
Hay x + 2 x - 1 2 . P = x - 1 x + 1 x - 2 . Q
Chọn P = (x – 2)(x + 1) = x 2 - x - 2 thì Q = (x + 2)(x – 1) = x 2 + x - 2
Trong mỗi trường hợp sau hãy tìm hai đa thức P và Q thỏa mãn đẳng thức : x + 2 P x - 2 = x - 1 Q x 2 - 4
x + 2 P x - 2 = x - 1 Q x 2 - 4
⇒ x + 2 . P . x 2 - 4 = x - 2 x - 1 . Q
Hay (x + 2)(x – 2)(x + 2).P = (x – 2)(x – 1).Q
Chọn P = (x – 1) thì Q = x + 2 2
Tìm điều kiện xác định rồi tính giá trị của mỗi phân thức sau: c) C=2x+1/x²+x-2 tại x thỏa mãn |2x+5|=7
Ta có: \(C=\dfrac{2x+1}{x^2+x-2}=\dfrac{2x+1}{\left(x-1\right)\left(x+2\right)}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne1\\x\ne-2\end{matrix}\right.\)
\(\left|2x+5\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=7\left(x\ge-\dfrac{5}{2}\right)\\2x+5=-7\left(x< -\dfrac{5}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)
Thay x=-6 vào C ta có:
\(C=\dfrac{2\cdot-6+1}{\left(-6\right)^2+\left(-6\right)-2}=\dfrac{-12+1}{36-6-2}=\dfrac{-11}{28}\)
Trong mỗi trường hợp sau đây, hãy tìm hai đa thức P và Q thỏa mãn đẳng thức :
a) \(\dfrac{\left(x+2\right)P}{x-2}=\dfrac{\left(x-1\right)Q}{x^2-4}\)
b) \(\dfrac{\left(x+2\right)P}{x^2-1}=\dfrac{\left(x-2\right)Q}{x^2-2x+1}\)
a) \(\dfrac{\left(x+2\right)P}{x-2}=\dfrac{\left(x-1\right)Q}{x^2-4}\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+2\right)P=\left(x-2\right)\left(x-1\right)Q\)
\(\Leftrightarrow\)\(\left(x+2\right)^2\left(x-2\right)P=\left(x-2\right)\left(x-1\right)Q\)
\(\Leftrightarrow\)\(\left(x+2\right)^2P=\left(x-1\right)Q\)
\(\Leftrightarrow P=x-1\)
\(Q=\left(x+2\right)^2=x^2+4x+4\)
b)\(\dfrac{\left(x+2\right)P}{x^2-1}=\dfrac{\left(x-2\right)Q}{x^2-2x+1}\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)P=\left(x+1\right)\left(x-1\right)\left(x-2\right)Q\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)P=\left(x+1\right)\left(x-2\right)Q\)
\(\Leftrightarrow P=\left(x+1\right)\left(x-2\right)=x^2-x-2\)
\(Q=\left(x-1\right)\left(x+2\right)=x^2+x-2\)
cho đa thức f(x) thỏa mãn điều kiện f(x)+3f(\(\frac{1}{x}\))=x2 . hãy tìm f(2)
Ta có
Thay x = 1/2 : \(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\)
Thay x = 2: \(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\)
\(\Rightarrow\left[f\left(2\right)+3f\left(\frac{1}{2}\right)\right]-3\left[f\left(\frac{1}{2}\right)+3f\left(2\right)\right]=4-\frac{3}{4}\)
\(\Rightarrow-5f\left(2\right)=\frac{13}{4}\Leftrightarrow f\left(2\right)=-\frac{13}{20}\)
Ta có :
Thay x = 1/2 : ƒ (12 )+3ƒ (2)=14
Thay x = 2: ƒ (2)+3ƒ (12 )=4
⇒[ƒ (2)+3ƒ (12 )]−3[ƒ (12 )+3ƒ (2)]=4−34
trong mỗi trường hợp sau gạch bỏ phần trục số không chứa các điểm biểu diễn các số nguyên thỏa mãn các điều kiện sau :
a, - 2< x < 3
cho hai số dương x,y thỏa mãn điều kiện x+y=1.Hãy tìm GTNN của biểu thức:
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)
Áp dụng BĐT Schwarz : \(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}=4\)
Lại có \(\dfrac{1}{2xy}=\dfrac{2}{4xy}\ge\dfrac{2}{\left(x+y\right)^2}=2\)
Cộng vế với vế được P \(\ge6\) ("=" khi x = y = 1/2)
Vậy Min P = 6 <=> x = y = 1/2