Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hứa Suất Trí
Xem chi tiết
Nguyễn Hữu Triết
21 tháng 12 2018 lúc 14:09

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

❤  Hoa ❤
21 tháng 12 2018 lúc 19:02

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

❤  Hoa ❤
21 tháng 12 2018 lúc 19:21

chết mk nhìn nhầm phần c bài 2 :

\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)

Để P xác định 

\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)

\(2+x\ne0\Rightarrow x\ne-2\)

\(x^2-4\ne0\Rightarrow x\ne0\)

\(x^2-3x\ne0\Rightarrow x\ne3\)

b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)

\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)

d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)

\(TH1:8x^2-4x^3< 0\)

\(\Rightarrow8x^2< 4x^3\)

\(\Rightarrow2< x\Rightarrow x>2\)

\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)

Dan_hoang
Xem chi tiết
Nguyễn Thùy Ninh Nguyễn...
Xem chi tiết
Fiona West
Xem chi tiết
Nguyễn Thái Thịnh
5 tháng 2 2022 lúc 18:25

Đề bài là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\) hay là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2}-\left(x+2\right)^2?\)

Fiona West
5 tháng 2 2022 lúc 18:25

\(\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\)

viết lại biểu thức 

Nguyễn Thái Thịnh
5 tháng 2 2022 lúc 20:11

a) \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}=\dfrac{\left(x-1-2\right)\left(x-1+2\right)}{\left(2x+1-x-2\right)\left(2x+1+x+2\right)}=\dfrac{\left(x+1\right)\left(x-3\right)}{3\left(x-1\right)\left(x+1\right)}\)  (1)

\(\Rightarrow\) ĐKXĐ: \(x\ne\pm1\)

b) \(\left(1\right)=\dfrac{x-3}{3x-3}\) (2)

c) Thay \(x=-3;x=1\) vào (2) ta có: \(\left\{{}\begin{matrix}B=\dfrac{-3-3}{3.\left(-3\right)-3}=\dfrac{1}{2}\\B=\dfrac{1-3}{3.1-3}=0\end{matrix}\right.\)

d) \(B=5\Rightarrow\dfrac{x-3}{3x-3}=5\Leftrightarrow x-3=15x-15\Leftrightarrow x=\dfrac{6}{7}\)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 1 2017 lúc 7:48

Phân thức:  x 2 x + z xác định khi x + z ≠ 0 ⇒ x ≠ - z

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 10 2017 lúc 10:37

Phân thức:  4 x 3 x - 7 xác định khi 3x – 7 ≠ 0 ⇒ x ≠ 7/3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 11 2019 lúc 9:47

Phân thức: 8 x + 2004 xác định khi x + 2004 ≠ 0 ⇒ x ≠ - 2004

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 9 2019 lúc 3:58

Phân thức được xác định khi biến x thỏa mãn B(x) ≠ 0.

Đăng Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 19:22

ĐKXĐ: x<>-1/2