Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 2 2019 lúc 15:55

Điều kiện:  x 3 - 2 x 2 = x 2 x - 2   ≠  0 ⇒ x  ≠  0 và x  ≠  2

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Nếu phân thức đã cho bằng 2 thì biểu thức x - 2 cũng có giá trị bằng 2. Suy ra: x- 2 = 2 ⇒ x = 4. Với x = 4 thỏa mãn điều kiện.

Vậy khi x = 4 thì phân thức có giá trị bằng 2.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 9 2018 lúc 11:05

Điều kiện: x 3 - 2 x 2 = x 2 x - 2 ≠ 0 ⇒ x  ≠  0 và x  ≠  2

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Nếu phân thức đã cho bằng -2 thì biểu thức x - 2 cũng có giá trị bằng -2. Suy ra: x - 2 = -2 ⇒ x = 0 không thỏa mãn điều kiện.

Vậy không có giá trị nào của x để phân thức bằng -2

Lê Trần Thanh Ngân
Xem chi tiết
Đức Anh Ramsay
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 2 2021 lúc 22:49

a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b) Ta có: \(\dfrac{4x-4}{2x^2-2}\)

\(=\dfrac{4\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{2}{x+1}\)

Để phân thức có giá trị bằng -2 thì \(\dfrac{2}{x+1}=-2\)

\(\Leftrightarrow x+1=-1\)

hay x=-2(thỏa ĐK)

Nguyễn Thùy Ninh Nguyễn...
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 12 2019 lúc 15:58

Các ước của 2 là ±1, ±2.

Vậy phân thức cần tìm phải xác định với mọi x ≠ ±1; ±2.

Ta có thể chọn:

Giải bài 49 trang 58 Toán 8 Tập 1 | Giải bài tập Toán 8

Có rất nhiều đáp án khác.

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
29 tháng 6 2017 lúc 10:42

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Hứa Suất Trí
Xem chi tiết
Nguyễn Hữu Triết
21 tháng 12 2018 lúc 14:09

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

❤  Hoa ❤
21 tháng 12 2018 lúc 19:02

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

❤  Hoa ❤
21 tháng 12 2018 lúc 19:21

chết mk nhìn nhầm phần c bài 2 :

\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)

Để P xác định 

\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)

\(2+x\ne0\Rightarrow x\ne-2\)

\(x^2-4\ne0\Rightarrow x\ne0\)

\(x^2-3x\ne0\Rightarrow x\ne3\)

b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)

\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)

d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)

\(TH1:8x^2-4x^3< 0\)

\(\Rightarrow8x^2< 4x^3\)

\(\Rightarrow2< x\Rightarrow x>2\)

\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)

Sách Giáo Khoa
Xem chi tiết
Nguyễn Đắc Định
21 tháng 4 2017 lúc 10:46

Giải bài 49 trang 58 Toán 8 Tập 1 | Giải bài tập Toán 8

Nguyễn Huy Tú
17 tháng 12 2019 lúc 15:38

Các ước của 2 là: 1;−1;2;−2. Do đó, mẫu của phân thức cần tìm là:

(x+1)(x−1)(x+2)(x−2)≠0

Vậy có thể chọn phân thức Giải bài 49 trang 58 Toán 8 Tập 1 | Giải bài tập Toán 8

Khách vãng lai đã xóa