-2.(-3-4x)-3(3x-70=31
-2.(-3-4x)-3.(3x-7)=31
a 575 - (2x +70)=445
b 575-2 (x+70)=445
c x5=32
d (3x-1)3=8
e (x-2)3=27
f (2x-3)2=9
g 2x+5 =34:32
h (4x -52).73=74
a: \(575-\left(2x+70\right)=445\)
=>\(2x+70=575-445=130\)
=>\(2x=130-70=60\)
=>x=60/2=30
b: \(575-2\left(x+70\right)=445\)
=>\(2\left(x+70\right)=575-445=130\)
=>x+70=130/2=65
=>x=65-70=-5
c: \(x^5=32\)
=>\(x^5=2^5\)
=>x=2
d: \(\left(3x-1\right)^3=8\)
=>\(\left(3x-1\right)^3=2^3\)
=>3x-1=2
=>3x=3
=>\(x=\dfrac{3}{3}=1\)
e: \(\left(x-2\right)^3=27\)
=>\(\left(x-2\right)^3=3^3\)
=>x-2=3
=>x=5
f: \(\left(2x-3\right)^2=9\)
=>\(\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
g: \(2x+5=3^4:3^2\)
=>\(2x+5=3^2\)
=>2x+5=9
=>2x=9-5=4
=>x=4/2=2
h: \(\left(4x-5^2\right)\cdot7^3=7^4\)
=>\(4x-25=\dfrac{7^4}{7^3}=7\)
=>4x=25+7=32
=>\(x=\dfrac{32}{4}=8\)
a, 6.(x-1)-5x=15
b, 2.(4x-2)-7x=16
c,-2.(-3-4x)-3.(3x-7)=31
a) => 6x-6-5x=15
=> 6x-6+6-5x=15+6
=> 6x-5x=21
=> x=21
b) => 8x-4-7x=16
=> 8x-4+4-7x=16+4
=> 8x-7x=20
=> x=20
c) => 8-[-(2.4x)]-9x-21=31
=> 8-(-8x)-9x=31+21
=> 8-(-8x)-9x=52
=> (-8x)-9x=8-52
=> (-8x)+(-9x)=-44
=> -17x=-44
=> x=(-44):(-17)
=> x=
câu c chắc tớ làm sai
a) 6*(x-1)-5x=15
b) -2*(-3-4x)-3*(3x-7)=31
c) 2*(4x-2)-7x=16
Tìm x:
a) 2^x+70=74
b)120-4x:2=80
c)(3x+5)^2=400
d)5(x+7)^3=135
e)600-{100-[60+(x^3+10)]}=518
g){[(16x-30).8]+80}:5=224
a. 2x + 70 = 74
<=> 2x = 4
<=> x = 2
b. 120 - \(\dfrac{4x}{2}\) = 80
<=> 120 - 2x = 80
<=> 120 - 80 = 2x
<=> 2x = 40
<=> x = 20
c. (3x + 5)2 = 400
<=> \(|3x+5|=\sqrt{400}\)
<=> \(|3x+5|=20\)
<=> \(\left[{}\begin{matrix}3x+5=20\\3x+5=-20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-25}{3}\end{matrix}\right.\)
1) 3x-(4+2x)=11
2) 4x+5=11+2x
3) 7x-17=31+x
1) 3x-(4+2x)=11
3x - 4 - 2x = 11
3x - 2x = 11+4
x = 15
Vậy x = 15.
2) 4x+5=11+2x
4x - 2x = 11 - 5
2x = 6
x = 6 : 2
x = 3
Vậy x = 3.
3) 7x-17=31+x
7x - x = 31 + 17
6x = 48
x = 48 : 6
x = 8
Vậy x = 8
# HOK TỐT #
\(3x-\left(4+2x\right)=11\)
\(3x-4-2x=11\)
\(x-15=0\)
\(x=15\)
\(4x+5=11+2x\)
\(2x-6=0\)
\(2x=6\)
\(x=3\)
Bn lm phần c đi , cố lên !
1) 3x-(4+2x)=11
3x-4-2x=11
3x-2x=11+4
x=15
2) 4x+5=11+2x
4x-2x=11-5
2x=6
x=6:2
x=3
3) 7x-17=31+x
7x-x=31+17
6x=48
x=48:6
x=8
Giải phương trình:
a. \(\sqrt[3]{x^2-4x+31}+x^2=4x-1\)
b. \(2x^2-8x-3\sqrt{x^2-4x-8}=18\)
c. \(\sqrt{\left(1+x^2\right)^3}-4x^3=1-3x^4\)
Tìm x, biết:
a, 70 - 5 ( x - 3 ) = 45
b, 10 + 2 x = 4 5 : 4 3
c, 60 - 3 x - 2 = 51
d, 4 x - 20 = 2 5 : 2 3
a, 70 - 5 ( x - 3 ) = 45
⇔ 5 . x - 3 = 70 - 45
⇔ 5 x - 3 = 35
⇔ x - 3 = 35 : 5 ⇔ x - 3 = 7
⇔ x = 10
b, 10 + 2 x = 4 5 : 4 3
⇔ 10 + 2 x = 4 2 ⇔ 10 + 2 x = 16
⇔ 2 x = 4 ⇔ x = 2
c, 60 - 3 x - 2 = 51
⇔ 3 x - 2 = 60 - 51
⇔ 3 x - 2 = 9
⇔ x - 2 = 3 ⇔ x = 5
d, 4 x - 20 = 2 5 : 2 3
⇔ 4 x - 20 = 2 2 ⇔ 4 x - 20 = 4
⇔ 4 x = 24 ⇔ x = 6
a) 15x = 10y =6z và 5x^3 + 2y^3 -z^3 =31
b) 7x =14y =6z và 2x^2 - 3y^2 =5
c) 3x = 8y =5z và |x-2y| =5
d) 4x = 5y = 6z và (3x-2y)^2 =16
Ta có :\(15x=10y=6z\Rightarrow\hept{\begin{cases}15x=10y\\10y=6z\end{cases}}\Rightarrow\hept{\begin{cases}3x=2y\\5y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\end{cases}}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Khi đó 5x3 + 2y3 - z3 = 31
=> 5(2k)3 + 2(3k)3 - (5k)3 = 31
=> 40k3 + 54k3 - 125k3 = 31
=> -31k3 = 31
=> k3 = -1
=> k = -1
=> x = -2 ; y = -3 ; z = -5
b) Ta có 7x = 14y = 6z => \(\hept{\begin{cases}7x=14y\\14y=6z\end{cases}}\Rightarrow\hept{\begin{cases}x=2y\\7y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{1}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{6}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\frac{x}{6}=\frac{y}{3}=\frac{z}{7}\)
Đặt \(\frac{x}{6}=\frac{y}{3}=\frac{z}{7}=k\Rightarrow\hept{\begin{cases}x=6k\\y=3k\\z=7k\end{cases}}\)
Khi đó 2x2 - 3y2 = 5
<=> 2.(6k)2 - 3.(3k)2 = 5
=> 72k2 - 27k2 = 5
=> 45k2 = 5
=> k2 = 1/9
=> k = \(\pm\frac{1}{3}\)
Nếu k = 1/3 => x = 2 ; y = 1 ; z = 7/3
Nếu k = -1/3 => x = -2 ; y = - 1 ; z = -7/3
Vậy các cặp (x;y;z) thỏa mãn là : (2;1;7/3) ; (-2 ; - 1; -7/3)
c) Ta có : \(3x=8y=5z\Rightarrow\frac{3x}{120}=\frac{8y}{120}=\frac{5z}{120}\Rightarrow\frac{x}{40}=\frac{y}{15}=\frac{z}{24}\)
Đặt \(\frac{x}{40}=\frac{y}{15}=\frac{z}{24}=k\Rightarrow\hept{\begin{cases}x=40k\\y=15k\\z=24k\end{cases}}\)
Khi đó |x - 2y| = 5
<=> |40k - 2.15k| = 5
=> |10k| = 5
=> \(\orbr{\begin{cases}10k=5\\10k=-5\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{1}{2}\\k=-\frac{1}{2}\end{cases}}\)
Nếu k = 5 => x = 20 ; y = 7,5 ; z = 12
Nếu k = -5 => x = -20 ; y =-7,5 ; z = -12
d) 4x = 5y = 6z => \(\frac{4x}{60}=\frac{5y}{60}=\frac{6z}{60}\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{10}\)
Đặt \(\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=k\Rightarrow\hept{\begin{cases}x=15k\\y=12k\\z=10k\end{cases}}\)
Khi đó (3x - 2y)2 = 16
<=> (3.15k - 2.12k)2 = 16
=> (45k -24k)2 = 16
=> (21k)2 = 16
=> \(\orbr{\begin{cases}21k=4\\21k=-4\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{4}{21}\\k=-\frac{4}{21}\end{cases}}\)
Nếu k = 4/21 => x = 20/7 ; y = 16/7 ; z = 40/21
Nếu k = -4/21 => x = -20/7 ; y = -16/7 ; z = -40/21
Ai có cách làm khác không