Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trang lê
Xem chi tiết
Nguyễn Sáng
Xem chi tiết
Ác Mộng Màn Đêm
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 3 2021 lúc 20:14

a) Ta có: \(\left\{{}\begin{matrix}3x+y=3\\2x-y=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2x-7=2\cdot2-7=-3\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(2;-3)

Nguyễn Lê Phước Thịnh
19 tháng 3 2021 lúc 20:16

b) Ta có: \(7x^2-2x+3=0\)

a=7; b=-2; c=3

\(\Delta=\left(-2\right)^2-4\cdot7\cdot3=4-84=-80< 0\)

Suy ra: Phương trình vô nghiệm

Vậy: \(S=\varnothing\)

Nguyễn Thị Huệ
Xem chi tiết
Lý Quốc Bảo
19 tháng 1 2016 lúc 19:17

1/ khi m=3 ta có

x+3y=3

3x+4y=7

<=>x=3-3y

      3(3-3y)+4y=7

<=>x=3-3y

      3y+4y=7

<=>x=3-3y

      7y=7

==>y=1

<=>x=3-3y

=>x=3-3.1

=>x=3-3

==>x=0

vây x=0     ; y=1

lê thị trâm
Xem chi tiết
Nguyễn Quỳnh Nga
Xem chi tiết
Nguyễn Quỳnh Nga
29 tháng 6 2017 lúc 19:32

giúp mk với mk cần gấp

Thiên An
30 tháng 6 2017 lúc 17:04

Ta có định lý sau:

Hệ  \(\hept{\begin{cases}a_1x+b_1y=c_1\\a_2x+b_2y=c_2\end{cases}}\)  

- Có 1 nghiệm duy nhất khi  \(\frac{a_1}{a_2}\ne\frac{b_1}{b_2}\)

- Có vô số nghiệm khi  \(\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}\)

Do đó  \(\hept{\begin{cases}2x+y=5\\mx-y=-7\end{cases}}\)   có 1 nghiệm duy nhất  \(\Leftrightarrow\)  \(\frac{2}{m}\ne\frac{1}{-1}\)  \(\Leftrightarrow\)  \(m\ne-2\)

Hệ pt ko thể có vô số nghiệm vì  \(\frac{1}{-1}\ne\frac{5}{-7}\)

mynameisbro
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 1 2024 lúc 22:09

a: Vì \(\dfrac{1}{2}\ne-\dfrac{2}{1}\)

nên hệ luôn có nghiệm duy nhất

\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6\left(m+2\right)=6m+12\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x=3-m+6m+12=5m+15\\x-2y=3-m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+3\\2y=x-3+m=m+3-3+m=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)

Để x>0 và y<0 thì \(\left\{{}\begin{matrix}m+3>0\\m< 0\end{matrix}\right.\)

=>-3<m<0

b: \(A=x^2+y^2=\left(m+3\right)^2+m^2\)

\(=2m^2+6m+9\)

\(=2\left(m^2+3m+\dfrac{9}{2}\right)\)

\(=2\left(m^2+3m+\dfrac{9}{4}+\dfrac{9}{4}\right)\)

\(=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\forall m\)

Dấu '=' xảy ra khi \(m+\dfrac{3}{2}=0\)

=>\(m=-\dfrac{3}{2}\)

Nguyễn đình tuấn
Xem chi tiết
Thắng Nguyễn
22 tháng 5 2016 lúc 7:03

m = -4,

x = -4,

y = -13;

m = -59/4,

x = 23/5,

y = 64/5;

l҉o҉n҉g҉ d҉z҉
22 tháng 5 2016 lúc 7:38

m = -4,

x = -4,

y = -13;

m = -59/4,

x = 23/5,

y = 64/5;

Neymar JR
Xem chi tiết
nguyễn thùy linh
Xem chi tiết