Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 6 2019 lúc 9:54

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 4 2017 lúc 12:43

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

hệ phương trình (*) trở thành :

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ u = 9 7 ⇒ 1 x = 9 7 ⇒ x = 7 9 + v = 2 7 ⇒ 1 y − 2 7 ⇒ y − 7 2

Vậy hệ phương trình có nghiệm (7/9;7/2)

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Giải hệ phương trình bằng phương pháp cộng đại số

1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 11 2019 lúc 10:14

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy hệ phương trình đã cho có nghiệm (x; y) = (43/51 ; -44/51 )

*Cách 2: Đặt m = 3x – 2, n = 3y + 2

Ta có hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: 3x – 2 = 9/17 ⇔ 3x = 2 + 9/17 ⇔ 3x = 43/17 ⇔ x = 43/51

3y + 2 = - 10/17 ⇔ 3y = -2 - 10/17 ⇔ 3y = - 44/17 ⇔ y = - 44/51

Vậy hệ phương trình đã cho có nghiệm (x; y) = (43/51 ; -44/51 )

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 6 2018 lúc 7:34

Vậy hệ phương trình có nghiệm (x;y) = (1; -2)

*Cách 2: Đặt m = x + y, n = x – y

Ta có hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy hệ phương trình có nghiệm (x;y) = (1; -2)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 12 2019 lúc 8:54

Nếu đặt u = x 2 − 1 thì x 2  = u + 1 nên phương trình có dạng

( 2  + 2)u = 2(u + 1) −  2  (1)

Ta giải phương trình (1):

(1) ⇔  2 u + 2u = 2u + 2 −  2

⇔  2 u = 2 −  2

⇔  2 u =  2 ( 2  − 1) ⇔ u =  2  − 1

⇔ x 2  − 1 =  2  − 1

⇔ x 2  = 2

⇔ x = 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 7 2019 lúc 16:38

Đặt Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ta có phương trình 6u – 8 = 3u + 7.

Giải phương trình này:

6u – 8 = 3u + 7

⇔ 6u – 3u = 7 + 8

⇔ 3u = 15 ⇔ u = 5

Vậy (16x + 3)/7 = 5 ⇔ 16x + 3 = 35

⇔ 16x = 32 ⇔ x = 2

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇔ (16x + 3)/7 = 5 ⇔ 16x + 3 = 35

⇔ 16x = 32 ⇔ x = 2

lạc lõng giữa dòng đời t...
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 19:56

1: Hai phương trình gọi là tương đương khi chúng có chung tập nghiệm

2: Phương trình bậc nhất một ẩn là phương trình có dạng ax+b=0(a<>0), với a,b là các số thực

Giang シ)
7 tháng 3 2022 lúc 19:57

Tham Khao :

1. 

a. Định nghĩa: Hai phương trình gọi là tương đương nếu chúng có cùng một tập hợp nghiệm.

 

[CHUẨN NHẤT] Thế nào là hai phương trình tương đương

 

 

b. Hai quy tắc biến đổi tương đương các phương trình: 

[CHUẨN NHẤT] Thế nào là hai phương trình tương đương (ảnh 2)

Giang シ)
7 tháng 3 2022 lúc 19:58

2.

Phương trình có dạng ax + b = 0, với a và b  hai số đã cho và a ≠ 0, được gọi là phương trình bậc nhất một ẩn. Ví dụ: Phương trình 5x – 2 = 0 là phương trình bậc nhất ẩn x. Phương trình y – 8 = 4 là phương trình bậc nhất ẩn y.

3.

Để giải các phương trình đưa được về ax+b=0 a x + b = 0 ta thường biến đổi phương trình như sau: + Quy đồng mẫu hai vế và khử mẫu. + Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng ax+b=0 a x + b = 0 hoặc ax=−b a x = − b .

 

 

 

Sách Giáo Khoa
Xem chi tiết
katherina
6 tháng 4 2017 lúc 10:02

a) ĐK : x,y \(\ne0\)

Đặt \(u=\dfrac{1}{x};v=\dfrac{1}{y}\)

Hệ pt đã cho trở thành :

\(\left\{{}\begin{matrix}u-v=1\\3u+4v=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u=1+v\\3\left(1+v\right)+4v=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u=1+\dfrac{2}{7}\\v=\dfrac{2}{7}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{9}{7}\\v=\dfrac{2}{7}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{9}{7}\\\dfrac{1}{y}=\dfrac{2}{7}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{9}\\y=\dfrac{7}{2}\end{matrix}\right.\)(TM)

Vậy x=7/9 và y=7/2

Huy Nguyen
29 tháng 1 2021 lúc 18:58

Nguyễn Minh Quân
Xem chi tiết