Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhất hai ẩn rồi giải: 1 x - 1 y = 1 3 x + 4 y = 5
Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhất hai ẩn rồi giải: 1 x - 2 + 1 y - 1 = 2 2 x - 2 - 3 y - 1 = 1
Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhất hai ẩn rồi giải:
a) 1 x − 1 y = 1 3 x + 4 y = 5 Đặt u = 1 x ; v = 1 y b) 1 x − 2 + 1 y − 1 = 2 2 x − 2 − 3 y − 1 = 1 đặt u = 1 x − 2 ; v = 1 y − 1
hệ phương trình (*) trở thành :
+ u = 9 7 ⇒ 1 x = 9 7 ⇒ x = 7 9 + v = 2 7 ⇒ 1 y − 2 7 ⇒ y − 7 2
Vậy hệ phương trình có nghiệm (7/9;7/2)
Kiến thức áp dụng
Giải hệ phương trình bằng phương pháp cộng đại số
1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.
2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).
3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.
Giải các hệ phương trình theo hai cách:
*Cách thứ nhất: đưa hệ phương trình về dạng: a x + b y = c a ' x + b ' y = c '
*Cách thứ hai: đặt ẩn phụ, chẳng hạn s = 3x – 2, t = 3y + 2
2 3 x - 2 - 4 = 5 3 y + 2 4 3 x - 2 + 7 3 y + 2 = - 2
Vậy hệ phương trình đã cho có nghiệm (x; y) = (43/51 ; -44/51 )
*Cách 2: Đặt m = 3x – 2, n = 3y + 2
Ta có hệ phương trình:
Ta có: 3x – 2 = 9/17 ⇔ 3x = 2 + 9/17 ⇔ 3x = 43/17 ⇔ x = 43/51
3y + 2 = - 10/17 ⇔ 3y = -2 - 10/17 ⇔ 3y = - 44/17 ⇔ y = - 44/51
Vậy hệ phương trình đã cho có nghiệm (x; y) = (43/51 ; -44/51 )
Giải các hệ phương trình theo hai cách:
*Cách thứ nhất: đưa hệ phương trình về dạng: a x + b y = c a ' x + b ' y = c '
*Cách thứ hai: đặt ẩn phụ, chẳng hạn s = 3x – 2, t = 3y + 2
3 x + y - 5 x - y = 12 - 5 x + y + 2 x - y = 11
Vậy hệ phương trình có nghiệm (x;y) = (1; -2)
*Cách 2: Đặt m = x + y, n = x – y
Ta có hệ phương trình:
Vậy hệ phương trình có nghiệm (x;y) = (1; -2)
Bằng cách đặt ẩn phụ theo hướng dẫn, giải các phương trình sau: 2 + 2 x 2 - 1 = 2 x 2 - 2
Hướng dẫn: Đặt u = x 2 - 1.
Nếu đặt u = x 2 − 1 thì x 2 = u + 1 nên phương trình có dạng
( 2 + 2)u = 2(u + 1) − 2 (1)
Ta giải phương trình (1):
(1) ⇔ 2 u + 2u = 2u + 2 − 2
⇔ 2 u = 2 − 2
⇔ 2 u = 2 ( 2 − 1) ⇔ u = 2 − 1
⇔ x 2 − 1 = 2 − 1
⇔ x 2 = 2
⇔ x = 1
Bằng cách đặt ẩn phụ theo hướng dẫn, giải các phương trình sau: 6 16 x + 3 7 - 8 = 3 16 x + 3 7 + 7
Hướng dẫn: u = 16 x + 3 7
Đặt ta có phương trình 6u – 8 = 3u + 7.
Giải phương trình này:
6u – 8 = 3u + 7
⇔ 6u – 3u = 7 + 8
⇔ 3u = 15 ⇔ u = 5
Vậy (16x + 3)/7 = 5 ⇔ 16x + 3 = 35
⇔ 16x = 32 ⇔ x = 2
⇔ (16x + 3)/7 = 5 ⇔ 16x + 3 = 35
⇔ 16x = 32 ⇔ x = 2
1. Thế nào là hai phương trình tương đương? Nêu các quy tắc biến đổi tương đương.
2. Thế nào là phương trình bậc nhất một ẩn? Nêu công thức nghiệm của phương trình bậc nhất một ẩn.
3. Nêu cách giải phương trình đưa được về phương trình dạng ax + b = 0.
1: Hai phương trình gọi là tương đương khi chúng có chung tập nghiệm
2: Phương trình bậc nhất một ẩn là phương trình có dạng ax+b=0(a<>0), với a,b là các số thực
Tham Khao :
1.
a. Định nghĩa: Hai phương trình gọi là tương đương nếu chúng có cùng một tập hợp nghiệm.
b. Hai quy tắc biến đổi tương đương các phương trình:
2.
Phương trình có dạng ax + b = 0, với a và b là hai số đã cho và a ≠ 0, được gọi là phương trình bậc nhất một ẩn. Ví dụ: Phương trình 5x – 2 = 0 là phương trình bậc nhất ẩn x. Phương trình y – 8 = 4 là phương trình bậc nhất ẩn y.
3.
Để giải các phương trình đưa được về ax+b=0 a x + b = 0 ta thường biến đổi phương trình như sau: + Quy đồng mẫu hai vế và khử mẫu. + Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng ax+b=0 a x + b = 0 hoặc ax=−b a x = − b .
Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhất hai ẩn rồi giải:
a) \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\) (Hướng dẫn: Đặt \(u=\dfrac{1}{x},v=\dfrac{1}{y}\));
b) \(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\) (Hướng dẫn: Đặt \(u=\dfrac{1}{x-2},v=\dfrac{1}{y-1}\)).
a) ĐK : x,y \(\ne0\)
Đặt \(u=\dfrac{1}{x};v=\dfrac{1}{y}\)
Hệ pt đã cho trở thành :
\(\left\{{}\begin{matrix}u-v=1\\3u+4v=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=1+v\\3\left(1+v\right)+4v=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u=1+\dfrac{2}{7}\\v=\dfrac{2}{7}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{9}{7}\\v=\dfrac{2}{7}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{9}{7}\\\dfrac{1}{y}=\dfrac{2}{7}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{9}\\y=\dfrac{7}{2}\end{matrix}\right.\)(TM)
Vậy x=7/9 và y=7/2
Cho bất phương trình: x + 2y + 1 \(\le4x+y+1\)
Bằng cách chuyển vế, hãy đưa bất phương trình trên về dạng tổng quát của bất phương trình bậc nhất hai ẩn. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn đó trên mặt phẳng tọa độ