chứng tỏ phương trình sau vô nghiệm
(x-3)^2+3x^3+4=0
chứng tỏ phương trình sau vô nghiệm
(x-3)^2+3x^3+4=0
Chứng tỏ phương trình sau vô nghiệm: x4 + 3x3 + 2x2 - 6x +14 = 0
Đề: Chứng tỏ phương trình sau vô nghiệm c) [2(|x| + 7)] - 3 = 0
=>2|x|+14-3=0
=>2|x|+11=0
=>2|x|=-11(loại)
Chứng tỏ phương trình sau vô nghiệm
x^2 + x + 3 = 0
Đặt \(B=x^2+x+3=0\)
\(\Rightarrow2B=2x^2+2x+3=0\)
\(\Leftrightarrow x^2+\left(x^2+2x+1\right)+2=0\)
\(\Leftrightarrow x^2+\left(x+2\right)^2+2=0\)
\(\Leftrightarrow x^2+\left(x+2\right)^2=-2\)
Có : \(x^2\ge0\)
\(\left(x+2\right)^2\ge0\)
\(\Rightarrow x^2+\left(x+2\right)^2\ge0\)
Mà \(-2< 0\)
Vậy pt vô nghiệm .
Cách 1. \(x^2+x+3=\left(x^2+x+\frac{1}{4}\right)+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}>0\)
Dấu "=" không xảy ra nên pt vô nghiệm.
Cách 2. Ta có \(x^2+x+3=\left(x^2+x+1\right)+2\)
Mà \(x^2+x+1\) là bình phương thiếu của một tổng nên vô nghiệm.
=> PT vô nghiệm.
x2+x+3
=x2+2.x.\(\frac{1}{2}\) +\(\left(\frac{1}{2}\right)^2\)+\(\frac{11}{4}\)
=(x+\(\frac{1}{2}\))2+\(\frac{11}{4}\ge\frac{11}{4}>0\)
Vậy phương trình trên vô nghiệm.
Chứng tỏ phương trình sau vô nghiệm
x^2 + x + 3 = 0
Đặt \(B=x^2+x+3=0\)
\(\Rightarrow2B=2x^2+2x+3=0\)
\(=x^2+\left(x^2+2x+1\right)+2=0\)
\(=x^2+\left(x+2\right)^2+2=0\)
\(\Rightarrow x^2+\left(x+2\right)^2=-2\)
Có:
\(x^2\ge0\)
\(\left(x+2\right)^2\ge0\)
\(\Rightarrow x^2+\left(x+2\right)^2\ge0\)
Mà \(-2< 0\)
Vì vậy phương trình vô nghiệm.
Chứng tỏ rằng các phương trình sau vô nghiệm:
a)\((x-1)^2+3x^2=0\)
b)\(x^2+2x+3=0\)
\(a)\) Ta có :
\(\left(x-1\right)^2\ge0\)
\(3x^2\ge0\)
\(\Rightarrow\)\(\left(x-1\right)^2+3x^2\ge0\)
Dấu "=" xảy ra tức là phương trình có nghiệm x khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\3x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=0\end{cases}}}\)
Vậy phương trình có nghiệm \(x=0\) và \(x=1\)
Đề sai nhé
\(b)\) Ta có :
\(x^2+2x+3\)
\(=\)\(\left(x^2+2x+1\right)+2\)
\(=\)\(\left(x+1\right)^2+2\ge2>0\)
Vậy đa thức \(x^2+2x+3\) vô nghiệm
Em mới lớp 7 có gì sai anh thông cảm nhé
a) Ta có :
( x - 1 ) 2 lớn hơn hoặc bằng 0
3x2 lớn hơn hoặc bằng 0
=> ( x - 1 )2 - 3x2 lớn hơn hoặc bằng 0
Dấu = xảy ra khi :
\(\hept{\begin{cases}x-1=0\\3x=0\end{cases}}=>\hept{\begin{cases}x=1\\x=0\end{cases}}\)
=> x thuộc rỗng
Vậy ( x - 1 )2 + 3x2 vô nghiệm
b) x2 + 2x + 3
= x2 + 2x + 1 +2
= ( x + 1 ) 2 + 2 ( áp dụng hằng đẳng thức )
Mà ( x + 1 )2 lớn hơn hoặc bằng 0
=> ( x + 1 )2 + 1 lớn hơn hoặc bằng 1
=> x2 + 2x + 3 > 0
Vậy x2 + 2x + 3 vô nghiệm
Chứng tỏ rằng các phương trình sau vô nghiệm :
a)x^2 +2*x+3 = 0 b)x^2+2x+4=0
a) Ta có: \(x^2+2x+3\)
\(=\left(x^2+2x+1\right)+2\)
\(=\left(x+1\right)^2+2>0\)
Vậy pt vô nghiệm
b) Ta có \(x^2+2x+4\)
\(=\left(x^2+2x+1\right)+3\)
\(=\left(x+1\right)^2+3>0\)
Vậy pt vô nghiệm
Chứng tỏ rằng các phương trình sau đây vô nghiệm:
a. 2(x+1)=3+2x2(x+1)=3+2x
b. 2(1−1,5x)+3x=02(1−1,5x)+3x=0
c. |x|=−1
a. Ta có: 2(x+1)=3+2x2(x+1)=3+2x
⇔2x+2=3+2x⇔0x=1⇔2x+2=3+2x⇔0x=1
Vậy phương trình vô nghiệm.
b. Ta có: 2(1−1,5x)+3x=02(1−1,5x)+3x=0
⇔2−3x+3x=0⇔2+0x=0⇔2−3x+3x=0⇔2+0x=0
Vậy phương trình vô nghiệm.
c. Vì |x|≥0|x|≥0 nên phương trình |x|=−1|x|=−1 vô nghiệm.
cứ đưa vào máy vinacal... ra nghiệm ảo thì là vô nghiệm.. hé hé hé :))))
Chứng tỏ rằng các phương trình sau đây vô nghiệm: 2(1 – 1,5x) + 3x = 0
Ta có: 2(1 – 1,5x) + 3x = 0 ⇔ 2 – 3x + 3x = 0 ⇔ 2 + 0x = 0
Vậy phương trình vô nghiệm.