Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Vũ Hùng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 10 2017 lúc 12:46

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 10 2017 lúc 17:06

Đáp án A.

Huỳnh Quang Minh
Xem chi tiết
Huỳnh Quang Minh
Xem chi tiết
Hoàng Lê Bảo Ngọc
5 tháng 9 2016 lúc 19:59

Áp dụng hệ thức Vi-et , ta có \(\begin{cases}z_1+z_2=-b\\z_1.z_2=c\end{cases}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2017 lúc 3:25

Nguyễn Đắc Phúc An
Xem chi tiết
YangSu
7 tháng 4 2023 lúc 12:44

\(z^2-2\left(2m-1\right)z+m^2=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}z_1+z_2=-\dfrac{b}{a}=2\left(2m-1\right)=4m-2\\z_1z_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)

Ta có :

\(z^2_1+z_2^2=2\)

\(\Leftrightarrow\left(z_1+z_2\right)^2-2z_1z_2=2\)

\(\Leftrightarrow\left(4m-2\right)^2-2m^2-2=0\)

\(\Leftrightarrow16m^2-16m+4-2m^2-2=0\)

\(\Leftrightarrow14m^2-16m+2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{1}{7}\end{matrix}\right.\)

Nguyễn Minh Hiếu
10 tháng 4 2023 lúc 16:43

Ta có phương trình bậc hai trên tập số phức:

z^2 - 2(2m-1)z + m^2 = 0

Theo định lý giá trị trung bình, nếu z1 và z2 là nghiệm của phương trình trên, thì ta có:

z1 + z2 = 2(2m-1) và z1z2 = m^2

Từ phương trình z1^2 + z2^2 = 2, ta suy ra:

(z1+z2)^2 - 2z1z2 = 4

Thay z1+z2 và z1z2 bằng các giá trị đã biết vào, ta được:

(2(2m-1))^2 - 2m^2 = 4

Đơn giản hóa biểu thức ta có:

m^2 - 4m + 1 = 0

Suy ra:

m = 2 + √3 hoặc m = 2 - √3

Vậy, để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, ta cần phải có m = 2 + √3 hoặc m = 2 - √3.

Kết luận: Có hai giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, đó là m = 2 + √3 hoặc m = 2 - √3.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 12 2018 lúc 13:02

Đáp án C

Shadow2 Kairuous
Xem chi tiết
alibaba nguyễn
30 tháng 3 2019 lúc 10:54

\(\hept{\begin{cases}\frac{1}{z}=2-\frac{1}{x}-\frac{1}{y}\left(1\right)\\\frac{2}{xy}-\left(2-\frac{1}{x}-\frac{1}{y}\right)^2=4\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow\left(\frac{1}{y^2}-\frac{4}{y}+4\right)+\left(\frac{1}{x^2}-\frac{4}{x}+4\right)=0\)

\(\Leftrightarrow\left(\frac{1}{y}-2\right)^2+\left(\frac{1}{x}-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow x+y+z=\frac{1}{2}+\frac{1}{2}-\frac{1}{2}=\frac{1}{2}\)

trần thị hoa
Xem chi tiết