cho x,y thuộc Z. hãy chứng tỏ rằng :
a, nếu x-y > 0 thì x>y
b, nếu x>y thì x-y>0
Cho x , y thuộc Z. Hãy chứng tỏ rằng:
a) Nếu x - y > 0 thì x > y
b) Nếu x > y < 0 thì x- y > 0
a) Ta có:
x - y > 0
\(\Rightarrow\)x - y là số nguyên dương nên x = y + q ( q \(\in\)N* )
\(\Rightarrow\)x > y ( đpcm )
b tương tự nha
Hãy chứng tỏ rằng với x, y thuộc Z, ta có:
a) Nếu x > y thì x - y > 0
b) Nếu x - y > 0 thì x > y
Cho x,y thuộc Z. Hãy chứng tỏ rằng :
a,Nếu x - y > 0 thì x > y
b, Nếu x > y thì X - y > 0
Hãy giúp mình với. Mình cảm ơn các bạn nhiều
Cho x, y ∈ Z. Hãy chứng tỏ rằng: Nếu x – y > 0 thì x > y
Áp dụng quy tắc chuyển vế trong bất đẳng thức ta có:
x – y > 0
x > 0 + y
hay x > y (điều phải chứng minh)
Cho x, y ∈ Z. Hãy chứng tỏ rằng: Nếu x > y thì x – y > 0
Áp dụng quy tắc chuyển vế trong bất đẳng thức ta có:
x > y
x > y + 0
x – y > 0 (điều phải chứng minh)
Nếu x=a/m và y=b/m (a,b,m thuộc Z và m>0) có x<y. hãy chứng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y
Ta có:x<y
=>x+x<y+x
\(\Rightarrow\frac{2a}{m}< \frac{a+b}{m}\)
=>2a<a+b
Mà \(x=\frac{a}{m}=\frac{2a}{2m}\)
\(y=\frac{b}{m}=\frac{2b}{2m}\)
Theo giả thuyết trên:
=>2a<a+b<2b
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow x< z< y\left(DPCM\right)\)
Cho x,y ∈ Z. Hãy chứng tỏ rằng:
a)Nếu x-y > 0 thì x > y;
b)Nếu x > y thì x-y > 0.
giúp mk với nha.hôm nay mình cần gấp!!!!!
a.
- Áp dụng quy tắc chuyển vế ta có:
\(x-y>0\)
\(\Leftrightarrow x>0+y\)
\(\Leftrightarrow x>y\) (đpcm)
b.
- Áp dụng quy tắc chuyển vế, ta có:
\(x>y\)
\(\Leftrightarrow x-y>0\) (đpcm)
p/s: theo mình mấy cái này chuyển vế là ra mà cần j cm đâu :v mà thoi làm như n cho dễ
a) Nếu x - y > 0 <=> x - y + y > 0 + y <=> x > y
b) Nếu x > y <=> x - y > y - y <=> x - y > 0
Giả sử x=a/m, y=b/m (a, b, m thuộc Z,m>0) nà x<y. Hãy chứng tỏ rằng nếu chọn z= a+b/2m thì ta có x<z<y
Vì x<y nên a<b.Ta có x=a/m=2a/2m,y=b/m=2b/2m
Chọn số z=2a+1/2m .Do 2a<2a+1=>x<z(1)
Do a<b nên a+1nên a+1 nhỏ hơn hoặc bằng b=>2a+2<=2b
Ta có 2a+1<2a+2<=2b nên 2a+1<2b. Do đó z<y (2)
Từ 1 và 2 suy ra x<z<y
ta có : x < y hay a/m < b/m => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = a/m = 2a/ 2m và y = b/m = 2b/2m và z = (a + b) / 2m
mà : a < b
suy ra : a + a < b + a
hay 2a < a + b
suy ra x < z (1)
mà : a < b
suy ra : a + b < b + b
hay a + b < 2b
suy ra z < y (2)
Giả sử x = a/m , y = b/m ( a,b,m thuộc Z, m > 0 ) và x < y. Hãy chứng tỏ rằng nếu chọn z = a+b/m thì ta có x < z < y
theo đề bài ta có :
\(x=\frac{a}{m}\); \(y=\frac{b}{m}\)( a,b,m \(\in\)Z , m > 0 )
vì x < y \(\Leftrightarrow\)\(\frac{a}{m}< \frac{b}{m}\)
\(\Rightarrow a< b\Rightarrow a+a< b+a\Rightarrow2a< a+b\)
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\left(1\right)\)
Vì a < b \(\Rightarrow\)a + b < b + c
\(\Rightarrow a+b< 2b\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(x< z< y\)
Theo bài ra ta có \(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow\frac{a}{2m}< \frac{b}{2m}\)
\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\) (1)
Từ x < y, ta lại có \(\frac{a}{2m}< \frac{b}{2m}\Rightarrow\frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\) (2)
Từ (1) và (2) suy ra đpcm