Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 3 2019 lúc 2:19

Đáp án B

Ta có  y ' = 4 sin 2 x   cos   x sin   x - ( 2 m 2 - 5 m + 2 ) cos   x = cos   x [ ( 2 sin   x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ]

Xét trên ( 0 ; π 2 )  ta thấy cos   x > 0 , để hàm số đồng biến trên khoảng này thì  ( 2 sin   x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ≥ 0  với  ∀ x ∈ ( 0 ; π 2 )  hay ( 2 m 2 - 5 m + 3 ) ≤ 0 ⇒ 1 ≤ m ≤ 3 2  do m nguyên nên tồn tại duy nhất m=1

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 12 2017 lúc 15:03

 

 

 

 

Tâm Cao
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 11 2019 lúc 14:00

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 1 2019 lúc 17:34

Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 4 2018 lúc 10:04

Chọn D

Ta có

.

.

Vậy

.

Crackinh
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2022 lúc 21:32

Từ giả thiết: \(\int f\left(x\right).e^{2x}dx=x.e^x+C\)

Đạo hàm 2 vế:

\(\Rightarrow f\left(x\right).e^{2x}=e^x+x.e^x\)

\(\Rightarrow f\left(x\right)=\dfrac{e^x+x.e^x}{e^{2x}}=\dfrac{x+1}{e^x}\)

Xét \(I=\int f'\left(x\right)e^{2x}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{2x}\\dv=f'\left(x\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2.e^{2x}dx\\v=f\left(x\right)\end{matrix}\right.\)

\(\Rightarrow I=f\left(x\right).e^{2x}-2\int f\left(x\right).e^{2x}dx=\left(\dfrac{x+1}{e^x}\right)e^{2x}-2.x.e^x+C\)

\(=\left(1-x\right)e^x+C\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 1 2018 lúc 5:33

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 6 2018 lúc 3:38

Hoàng Nguyễn
Xem chi tiết