Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(2sin x +1) = m có nghiệm thuộc nửa khoảng [ 0 ; π 6 ) là:
A. (-2;0]
B. (0;2]
C. [-2;2)
D. (-2;0)
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(sin x) = m có nghiệm thuộc khoảng 0 ; π là
Cho hàm số y = f x liên tục trên R và có đồ thị như hình vẽ bên. Gọi S là tập hợp tất cả các số nguyên m để phương trình f sin x = 3 sin x + m có nghiệm thuộc khoảng 0 ; π .Tổng các phần tử của S bằng
A. -5.
B. -8.
C. -6.
D. -10.
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình f(cos x) = -2m + 1 có nghiệm thuộc khoảng 0 ; π 2 là
A. (-1;1]
B. (0;1)
C. (-1;1)
D. (0;1]
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ dưới đây
Tập hợp tất cả các giá trị thực của tham số m để bất phương trình f ( 4 - x 2 ) = m có nghiệm thuộc nửa khoảng [ - 2 ; 3 ) là:
A. (-1;3]
B. ( - 1 ; f 2 ]
C. [-1;3]
D. - 1 ; f 2
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f ( e x ) = m có nghiệm thuộc khoảng (0; ln 3) là:
A. (1;3)
B. - 1 3 ; 0
C. - 1 3 ; 1
D. - 1 3 ; 1
Cho hàm số f(x) liên tục trên ℝ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f ( 1 - 2 cos x ) + m = 0 có nghiệm thuộc khoảng - π 2 ; π 2
A. [-4;0]
B. [-4;0)
C. [0;4)
D. (0;4)
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(cosx)=m có 2 nghiệm phân biệt thuộc ( 0 ; 3 π 2 ] là:
A. [-2;2]
B. (0;2)
C. (-2;2)
D. [0;2)
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d với a , b , c , d ∈ R có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên thuộc đoạn - 10 ; 10 của tham số m để bất phương trình f 1 - x 2 + 2 3 x 3 - x 2 + 8 3 - f m ≤ 0 có nghiệm. Số phần tử của tập hợp S bằng
A. 9
B. 10
C. 12
D. 11