CHỨNG MINH : 5N+2 VÀ (2N+1)(3N+1) NGUYÊN TỐ CÙNG NHAU (N THUỘC N*)
CHỨNG MINH : 5N+2 VÀ (2N+1)(3N+1) NGUYÊN TỐ CÙNG NHAU (N THUỘC N*)
Chứng minh rằng:
a, 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (n thuộc N )
b, 5n + 7 và 3n + 4 là 2 số nguyên tố cùng nhau (n thuộc N )
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Chứng minh rằng số tự nhiên n là các số nguyên tố cùng nhau:
a) 2n+1 và 3n+2
b)2n+2 và 5n+3 c) 3n+1 và 4n+1
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
a) Tìm n thuộc N để 2n +1 và 7n +2 nguyên tố cùng nhau .
b)Tìm n thuộc N và n < 30 để 3n + 4 và 5n + 1 không nguyên tố cùng nhau.
Chứng minh rằng:với mọi n thuộc N thì hai số:
a) 3n + 4 và 2n + 3 là hai số nguyên tố cùng nhau
b) 5n +1 và 6n + 1 là hai số nguyên tố cùng nhau
giải giúp tôi với
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Bài 2: CMR
a,7n+10 và 5n+7 là 2 số nguyên tố cùng nhau (n thuộc N)
b,2n+1 và 6n+5 là 2 số nguyên tố cùng nhau ( n thuộc N )
c,n+1 và 3n+4 là 2 số nguyên tố cùng nhau ( n thuộc N )
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
Chứng minh rằng với n N thì hai số sau nguyên tố cùng nhau:
a) 5n + 2 và 2n + 1 b) 7n + 10 và 5n + 7 c) 2n + 1 và 2n + 3 c) 3n + 1 và 5n + 2
\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)
Suy ra ĐPCM
Cmtt với c,d
a) gọi d là \(UCLN\left(5n+2;2n+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}5n+2⋮d\\2n+1⋮d\end{matrix}\right.\Rightarrow5\left(2n+1\right)-2\left(5n+2\right)=10n+5-10n-4⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(5n+2;2n+1\right)=1\)b) gọi d là \(UCLN\left(7n+10;5n+7\right)\)
\(\Rightarrow\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\Rightarrow5\left(7n+10\right)-7\left(5n+7\right)=35n+50-35n-49⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(7n+10;5n+7\right)=1\)
d) gọi d là \(UCLN\left(3n+1;5n+2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}3n+1⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)=15n+6-15n-5⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(3n+1;5n+2\right)=1\)
Chứng minh các cặp số sau nnguyeen tố cùng nhau vs mọi n thuộc Z:
1, 2n+1 và 6n+5
2, 3n+2 và 5n+3
Gọi ước chung của 2n+1 và 6n+5 là d(với d là số tự nhiên khác 0 ko cần d là số nguyên), ta có:
2n+1 chia hết cho d=> 6n+3 chia hết cho d
6n+5 chia hết cho d
=> (6n+5)-(6n+3)=2 chia hết cho d=> d\(\in\) {1;2}
Vì 2n+1 không chia hết cho 2 nên d=1
=> ước chung của 2n+1 và 6n+5 là 1=> UCLN(2n+1;6n+5)=1=> 2n+1 và 6n+5 nguyên tố cùng nhau với mọi n thuộc Z
b) gọi ước chung của 3n+2 và 5n+3 là d(với d là số tự nhiên khác 0).TA có:
3n+2 chia hết cho d=> 15n+10 chia hết cho d
5n+3 chia hết cho d=> 15n+9 chia hết cho d
=> (15n+10)-(15n+9)=1 chia hết cho d=> d=1
=> UC(3n+2;5n+3)=1=> UCLN(3n+2;5n+3)=1
=> 3n+2 và 5n+3 nguyên tố cùng nhau với mọi n thuộc Z
chứng minh rằng 2n+1 và 3n+1 / với n thuộc số tự nhiên \ 2 số nguyên tố cùng nhau
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Bạn nhìn kiểu này cho dễ