Tìm tất cả giá trị thực x, y sao cho 2 x - 3 - y i = y + 4 + x + 2 y - 2 i , trong đó i là đơn vị ảo
A. x = 1; y = -2
B. x = -1; y = 2
C. x = 17 7 ; y = 6 7
D. x = - 17 7 ; y = - 6 7
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Tìm tất cả giá trị của x sao cho x^2 - 2xy + y^2 + 3x - 3y - 4 = 0 biết y = 3
\(x^2-2xy+y^2+3x-3y-4=0\)
\(\Leftrightarrow\left(x-y\right)^2+3\left(x-y\right)-4=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-y+3\right)-4=0\)
Thay y = 3 vào biểu thức trên ta được :
\(x\left(x-3\right)-4=0\)
\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\Leftrightarrow x=4;x=-1\)
Vậy với y = 3 thì x = 4 ; x = -1
Thay y = 3 vào bthuc ta được :
x2 - 6x + 9 + 3x - 9 - 4 = 0
<=> x2 - 3x - 4 = 0
<=> ( x + 1 )( x - 4 ) = 0
<=> x = -1 hoặc x = 4
tìm tất cả các giá trị thực của m sao cho đồ thì hàm số y=x mũ 4 -2(m+1)x bình + m bình có 3 điểm cực trị tạo thành 1 tam giác vuông cân
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y=x^4-2\left(m-1\right)x^2+m-2\) đồng biến trên khoảng (1;3)
y'= \(4x^3-4\left(m-1\right)x\)
Để hàm số đồng biến trên khoảng (1;3) thì \(y'\left(x\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow x^2-\left(m-1\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow m-1\le x^2,\forall x\in\left(1;3\right)\)
\(\Rightarrow m-1\le1\Leftrightarrow m\le2\)
Vậy \(m\in\) (−\(\infty\);2]
Cho hàm số y = x 2 + x + m 2 . Tổng tất cả các giá trị thực tham số m sao cho m i n [ - 2 ; 2 ] y = 4 bằng
A. - 31 4
B. -8
C. - 23 4
D. 9 4
Chọn C
Xét u = x 2 + x + m trên đoạn [-2;2] ta có
Ta tính được u(-2) = m + 2;
Nhận xét nên
Nếu
Nếu
Nếu
Vậy tổng các giá trị thực của tham số là
Cho hàm số y = x 2 + x + m 2 . Tổng tất cả các giá trị thực tham số m sao cho m i n [ - 2 ; 2 ] y = 4 bằng
A. - 31 4
B. -8
C. - 23 4
D. 9 4
Chọn đáp án C.
Xét u = x 2 + x + m trên đoạn [-2;2] ta có u ' = 0
Do đó
Vậy tổng các giá trị thực của tham số là 9 4 - 8 = - 23 4
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y= (m-3)x- (2m+1).cos x luôn nghịch biến trên R?
A. - 4 ≤ m ≤ 2 3
B. m> 2
C. m > 3 m ≠ 1
D. m<2
Chọn A.
Tập xác định:D= R. Ta có:y ‘= m-3 + (2m+1).sinx
Hàm số nghịch biến trên R
Trường hợp 1: m= -1/ 2 ; ta có 0 ≤ 7 2 ∀ x ∈ ℝ
Vậy hàm số luôn nghịch biến trên R.
Trường hợp 2: m< -1/ 2 ; ta có
Trường hợp 3:m > -1/2 ; ta có:
Vậy - 4 ≤ m ≤ 2 3
Tìm tổng tất cả các giá trị thực của tham số
m sao cho đường thẳng đi qua hai điểm cực trị của đồ thị hàm số
\(y=2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x.\) song song đường thẳng y= -4x
.
Chứng minh công thức tổng quát phương trình đi qua 2 điểm cực trị:
giả sử hàm bậc 3: \(y=ax^3+bxx^2+cx+d\left(a\ne0\right)\) có 2 điểm cực trị x1;x2
Ta đi tìm số dư 1 cách tổng quát:
Ta có: \(y'=3ax^2+2bx+c-và-y''=6ax+b\)
Xét phép chia giữa y' và y'' ta có: \(y=y'\left(\dfrac{1}{3}x+\dfrac{b}{9a}\right)+g\left(x\right)\left(1\right)\) là phường trình đi qua 2 điểm cực trị của đồ thị hàm số bậc 3
từ (1) Ta có: \(y=y'\dfrac{3ax+b}{9a}+g\left(x\right)-hay-y=y'\dfrac{6ax+2b}{18a}g\left(x\right)\)
Từ đây dễ suy ra: \(g\left(x\right)=y-\dfrac{y'.y''}{18a}\left(công-thức-tổng-quát\right)\) ( dĩ nhiên bạn chỉ cần nhớ cái này )
áp dụng vào bài toán ta có:
\(2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x-\left(6x^2+6\left(m-1\right)x+6m\left(1-2m\right)\right).\dfrac{12x+6\left(m-1\right)}{18.2}\)
Gán: \(\left\{{}\begin{matrix}x=i\\m=10\end{matrix}\right.\) => 1710-841i
\(\Rightarrow y=4m\left(-2m-1\right)x+17m^2+m\) bài toán quay trở về bài toán đơn giản bạn giải nốt là oke