Cho a,b,c la 3 canh cua tam giac\(a\ge b\ge c\)
cm \(9ab\ge\left(a+b+c\right)^2\)
Cho tam giác ABC có độ dài 3 cạnh là a,b,c sao cho \(a\ge b\ge c\)
CM \(9ab\ge\left(a+b+c\right)^2\)
ta có \(a\ge b\ge c\)
zì \(c\le b\)nên \(\left(a+b+c\right)^2\le\left(a+2b\right)^2\)
do zậy ta chỉ cần chứng minh \(9ab\ge\left(a+2b\right)^2\)
tương đương zới \(a^2-5ab+4b^2\le0\Leftrightarrow\left(a-b\right)\left(a-4b\right)\le0\)
zì \(a\ge b\)zà theo bất đẳng thức tam giác có \(a< b+c\le2b\le4b\)nên điều trên luôn đúng
zậy bất đẳng thức đc CM . dấu "=" xảy ra khi zà chỉ khi a=b=c hay tam giác ABC đều
cho a,b,c la ba canh cua tam giac.
Chung minh :\(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\ge a+b+c\)
Cho a, b, c la do dai ba canh cua mot tam giac . Chung minh rang :
\(\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\ge\frac{1}{a+b+c}\)
hỏi j khó vậy
Sửa VP = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Vì a, b, c là độ dài ba cạnh của một tam giác
=> a, b, c > 0
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)( cái này bạn tự chứng minh nhé ) ta có :
\(\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\)
TT : \(\frac{1}{a+c-b}+\frac{1}{b+c-a}\ge\frac{4}{a+c-b+b+c-a}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
Cộng theo vế ta có :
\(\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{a+c-b}+\frac{1}{b+c-a}+\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Leftrightarrow2\left(\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)( đpcm )
Đẳng thức xảy ra ⇔ a = b = c
Sử dụng liên tiếp 2 lần bất đẳng thức AM-GM ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge2\sqrt[2]{\frac{1}{\left(a+b-c\right)\left(b+c-a\right)}}\)
\(=\frac{2}{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}}\ge\frac{2}{\frac{a+b-c+b+c-a}{2}}=\frac{2}{\frac{2b}{2}}=\frac{2}{b}\)
Bằng phương pháp chứng minh tương tự ta thu được :
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c};\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}\)
Cộng theo vế ba bất đẳng thức trên ta được : \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(< =>2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(< =>\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Vậy ta có điều phải chứng minh
cm
\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)với a b c là độ dài 3 canh của tam giác
Có:
\(\left(b+c+a\right)\left(a+b-c\right)=b^2-\left(c-a\right)^2\le b^2\)
\(\left(c+a-b\right)\left(b+c-a\right)=c^2-\left(a-b\right)^2\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)
Nhân các vế của BĐT sau ta được:
\(\left[\left(b+c+a\right)\left(a+c-b\right)+\left(a+b-c\right)\right]^2\le\left[abc\right]^2\)
Tương tự:
\(\Rightarrow abc\ge\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\)
đpcm.
a,b,c ko là độ dài 3 cạnh tam giác vẫn chứng minh được !!
Nếu a,b,c ko là độ dài 3 cạnh tam giác thì tham khảo BĐT schur bậc 3 nha !
Dùng \(\lceil\)SOS*DAO*LAM\(\rfloor\):
Cách chứng minh tại: Chứng minh BĐT - Bất đẳng thức và cực trị - Diễn đàn Toán học (có \(2\) cách của mình và của anh DOTOANNANG, tuy nhiên với điều kiện a, b, c là độ dài 3 cạnh tam giác, bạn có thể dùng cách đầu tiên của mình cho nó đẹp:D)
Ghi chú: 34Cho a,b,c>0. CM các bđt sau:
a)\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)^2\)
b)\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
c)\(9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)
a)Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT=\left(\frac{a^4}{a}+\frac{b^4}{b}+\frac{c^4}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge\frac{9\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\ge\frac{9\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{\left(a+b+c\right)^2}=\left(a+b+c\right)^2\)
Đẳng thức xảy ra khi \(a=b=c\)
b) \(VT-VP=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=c\)
c) Theo câu b và BĐT Cauchy-Schwarz:
\(\Rightarrow3.3\left(a^3+b^3+c^3\right)\ge3\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(\ge3\left(a+b+c\right)\left[\frac{\left(a+b+c\right)^2}{3}\right]=\left(a+b+c\right)^3\)
Đẳng thức xảy ra khi \(a=b=c\)
Cho các số thực dương a,b. Chứng minh rằng:
a/ \(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{9ab}{a^2+b^2}\ge\dfrac{13}{2}\)
b/ \(\dfrac{a}{3b}+\dfrac{b\left(a+b\right)}{a^2+ab+b^2}\ge1\)
c/ \(\dfrac{a}{2b}+\dfrac{2b}{a+b}+\dfrac{ab}{2\left(a^3+2b^3\right)}\ge\dfrac{5}{3}\)
a) Sai với \(a=1,b=2\)
b)
Thực hiện biến đổi tương đương:
\(\frac{a}{3b}+\frac{b(a+b)}{a^2+ab+b^2}\geq 1\)
\(\Leftrightarrow \frac{a}{3b}+\frac{b(a+b)+a^2}{a^2+ab+b^2}-\frac{a^2}{a^2+ab+b^2}\geq 1\)
\(\Leftrightarrow \frac{a}{3b}-\frac{a^2}{a^2+ab+b^2}\geq 0\)
\(\Leftrightarrow \frac{1}{3b}-\frac{a}{a^2+ab+b^2}\geq 0\)
\(\Leftrightarrow \frac{a^2+ab+b^2-3ab}{3b(a^2+ab+b^2)}\geq 0\)
\(\Leftrightarrow \frac{(a-b)^2}{3b(a^2+ab+b^2)}\geq 0\) (luôn đúng)
Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b$
c) BĐT sai với \(a=1,b=2\)
a, b, c \(\ge\)0. CM: \(\frac{a^3+b^2+c}{3}\ge abc+\frac{3I\left(a-b\right)\left(b-c\right)\left(c-a\right)I}{4}\)
Cho a,b,c là độ dài 3 cạnh 1 tam giác và \(a\ge b\ge c\). Chứng minh rằng
\(\sqrt{a\left(a+b-\sqrt{ab}\right)}+\sqrt{b\left(a+c-\sqrt{ac}\right)}+\sqrt{c\left(c+b-\sqrt{bc}\right)}\ge a+b +c\)
cho a,b,c là 3 cạnh của 1 tam giác
cm\(\left(b+c-a\right)\left(a+b-c\right)\left(a+c-b\right)\ge abc\)