Cho tam giác ABC, AB = 9 cm, AC = 12 cm, BC = 15 cm
a) Chứng minh tam giác ABC vuông
b) Kẻ AH vuông góc với BC, tính AH
c) Gọi M là trung điểm của BC, tính HM
Ai giải được phần b mình tick cho
Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC (H thuộc BC). Kẻ HM vuông góc với AB (M thuộc AB). Kẻ HN vuông góc với AC (N thuộc AC). Biết AB= 13 cm; AC= 15 cm; AH= 12 cm
a, Chứng minh tam giác ANH đồng dạng với tam giác AHC
b, Tính HC, AN
c, Chứng minh AM.AB=AN.AC
b, Tính diện tích tam giác AMN
a: Xét ΔANH vuông tại N và ΔAHC vuông tại H có
góc NAH chung
Do đó: ΔANH\(\sim\)ΔAHC
b: \(HC=\sqrt{15^2-12^2}=9\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
refer
a: Xét ΔAEM vuông tại M và ΔAHM vuông tại M có
AM chung
ME=MH
Do đó: ΔAEM=ΔAHM
b: Xét ΔBHE có
BM là đường cao
BM là đường trung tuyến
Do đó: ΔBHE cân tại B
Xét ΔAEB và ΔAHB có
AE=AH
EB=HB
AB chung
Do đó: ΔAEB=ΔAHB
Suy ra: ˆAEB=ˆAHB=900AEB^=AHB^=900
hay AE⊥EB
tham khảo
a: Xét ΔAEM vuông tại M và ΔAHM vuông tại M có
AM chung
ME=MH
Do đó: ΔAEM=ΔAHM
b: Xét ΔBHE có
BM là đường cao
BM là đường trung tuyến
Do đó: ΔBHE cân tại B
Xét ΔAEB và ΔAHB có
AE=AH
EB=HB
AB chung
Do đó: ΔAEB=ΔAHB
Suy ra: ˆAEB=ˆAHB=900AEB^=AHB^=900
hay AE⊥EB
Cho tam giác ABC vuông tại A ,AB bằng 9 cm ,AC bằng 12 cm .Kẻ AH vuông góc với BC tại H
a/Chứng minh tam giác abh đồng dạng tam giác ABC và AB mũ 2 = Hb . BC
b/tính BC, ah
c/tia phân giác góc ACB cắt ah tại I và cắt AB tại D Chứng minh CB.CI=CA.CDCD
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
b: BC=căn 9^2+12^2=15cm
AH=9*12/15=7,2cm
cho tam giác ABC vuông tại B đường cao BH cho AH=9 cm, HC=16 cm
a) tính BH,AB,BC
b)từ H kẻ HE vuông góc BC .chứng minh BE.BC=HA.HC
c)trung tuyến BM của tam giác ABC .Tính góc BMH
d0 Tia phân giác góc ABC cắt AC tại D. CM: 1/BA + 1/BC = (căn 2)/BD
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(HA\cdot HC=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HE là đường cao
nên \(BE\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)
Cho tam giác ABC vuông tại A ,BD là tia phân giác góc B ,kẻ DE vuông góc BC tại góc E. a /chứng minh tam giác ABD bằng tam giác EBD b/ Tính BE biết BC = 15 cm, AC = 12 cm c/ Gọi M ,N lần lượt là trung điểm của AB và BE, K là giao điểm của AN với BD .Chứng minh ba điểm E,K,M thẳng hàng
a) Xét tam giác ABD và tam giác EBD có
BAD=BED(=90 ĐỘ)
ABD=EBD ( BD là tia pg của ABC)
BD cạnh chug
Do đó t/giác ABD= t/ giác EBD(chgn)
b) Vì t/giác ABC vuông ở A nên
suy ra AB^2+AC^2=BC^2 ( đl PY TA GO)
AB^2+12^2=15^2
AB^2+144=225
AB^2=81
AB^2=9^2
AB=9 cm
Mà AB=BE( t/giác ABD=t/giác EBD)
Do đó BE=9 cm
( sr bạn nhé í c mình chx nghĩ ra☹)
Cho tam giác ABC vuông tại a đường cao AH h thuộc BC biết AB = 15 cm AC = 20 cm .a)tính độ dài đoạn thẳng bc ah.b) kẻ HM vuông góc với AB HN vuông góc với AC chứng minh tam giác ahb đồng dạng với tam giác ACB .C)gọi I là trung điểm của BC k là giao điểm của AE và MN chứng minh AD vuông góc MN tại k.
cho tam giác ABC vuông ở A kẻ AH vuông góc với BC ( H thuộc BC . biết AB= 15 cm, AH = 12 cm
chứng minh
a/ tam giác AHB ~ tam giác CHA
b/ Tính BH, HC, AC ?
c/ kẻ AM là tia phân giác góc ABC. Tính BM ?
d/ Kẻ E thuộc AC sao cho HE // AB. N là trung điểm của AB. CN cắt HE tại I. Chúng minh I là trung điểm của HE ?
bài 3: Cho tam giác ABC cân tại A có AB = AC = 5cm, BC = 8cm. Gọi H là trung điểm của BC. Tính AH
Bài 4: Cho ABC có AB= 15 cm, AC = 20 cm, BC = 25 cm. Kẻ AH vuông góc với BC tại H. a) Chứng minh: ABC vuông tại A b) Tính diện tích ABC c) Tính AH giúp mik với trình bày rõ cho mik nha
Cho tam giác ABC có AB = 15 cm và AC= 8 cm và BC = 17 cm a) Chứng minh tam giác ABC vuôngb) Gọi AH là đường cao trong tam giác ABC, đường thẳng qua H vuông góc với AB cắt đường tròn (A;AH) tại D. Chứng minh BD là tiếp tuyến của đường tròn (A;AH)c) Tính HD.
Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC (H thuộc BC).
a/ Chứng minh Tam giác AHB = Tam giác AHC. Từ đó suy ra HB = HC
b/ Biết AH = 8 cm, BC = 12 cm. Tính độ dài AC.
c/ Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh Tam giác HDE cân.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: BH=CH=12/2=6cm
=>AC=căn AH^2+HC^2=10cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H