a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
b: BC=căn 9^2+12^2=15cm
AH=9*12/15=7,2cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
b: BC=căn 9^2+12^2=15cm
AH=9*12/15=7,2cm
Cho tam giác ABC vuông tại A có BC bằng 6 cm AC bằng 8 cm Kẻ đường cao AH a,Chứng minh tam giác ABC đồng dạng với tam giác hba chứng minh ah² = HB nhân HC tính độ dài của BC ah phân giác của góc ACB cắt ah tại E cắt d cắt AB tại D tính tỉ số diện tích của tam giác acd và tam giác hce
Cho tam giác ABC vuông tại A có AB=9 cm,AC = 12 cm tia phân giác góc A cắt BC tại D, từ D kẻ DE vuông góc AC (E thuộc AC)
a,Tính độ dài BD và CD
b, kẻ đường cao AH. Hãy chứng minh tam giác ABH đồng dạng tam giác CDE
Cho tam giác ABC vuông tại A có AB bằng 6 cm BC = 10 cm Vẽ đường cao AH H thuộc BC a) Chứng minh tam giác ABC đồng dạng với tam giác hba b) kẻ tia phân giác AD của góc ABC tia phân giác của góc ABC cắt ah AD lần lượt tại E và F Chứng minh ae = 5/3 eh c) chứng minh bf vu0ng góc ad
Cho tam giác ABC vuông tại A có AB= 6cm, AC=8 cm. Kẻ đường cao AH (H ϵ BC)
a) Chứng minh △ABC~△HBA
b) Tính độ dài các cạnh BC, AH
c) Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của 2 △ ACD và HCE
cho tam giác ABC vuông tại A đường cao ah .chứng minh tam giác HBA đồng dạng với tam giác ABC , chứng minh AH^2 = HB×HC ,tia phân giác góc AHC cắt AC tại d chứng minh HB/HC = AB^2/DC^2 , khi c bằng 45° và AB =6cm tính độ dài HD
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, đường cao AH.
a) Tính BC và AH
b) Kẻ HE vuông góc AB tại E, HF vuông góc AC tại F. Chứng minh tam giác AEH đồng dạng tam giác AHB
c) Chứng minh AH^2 = AF.AC
d) Chứng minh tam giác ABC đồng dạng AFE
e) Tia phân giác BAC cắt EF, BC lần lượt tại I và K. Chứng minh KB.IE = KC.IF
Cho tam giác ABC nhọn, kẻ đường cao AH (H thuộc cạnh BC). Tia phân giác của góc ABH cắt AH tại I. Qua A kẻ đường thẳng vuông góc với AB, cắt tia BI tại K. Kẻ KD vuông góc với BC (D thuộc BC). a) Chứng minh rằng: tam giác AKD cân. b) Chứng minh rằng: BK vuông gióc với AD . Từ đó suy ra I là trực tâm của tam giác ABD. c) Trên tia đối của tia HA lấy điểm E sao cho HE = HI. Chứng minh rằng AKDE là hình thang cân. d) Nếu biết rằng ADE 3ADK , tính số đo ABC.
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng.
2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
Cho tam giác ABC, góc A = 900, AH vuông góc BC, AB = 6cm, AC = 8 cm, phân giác của góc B cắt AH tại I, cắt BC tại D
1. Tính BC, AD, DC
2. CM tam giác ABC đồng dạng với tam giác HBA, tam giác ABI đồng dạng với tam giác CBD
3. CM AB2 = BH . BC, AH2 = HB . HC, \(\dfrac{IH}{IA}\) = \(\dfrac{AD}{BC}\)