Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Kim Cương
Xem chi tiết
Trần Thị Thanh Thảo
Xem chi tiết
Đỗ Lê Tú Linh
1 tháng 8 2015 lúc 21:53

A=1-2+3-4+...+99-100

=(1-2)+(3-4)+...+(99-100)

=-1+(-1)+(-1)+...+(-1)

Số số -1 là: [(100-1)+1]/2=50(số)

=(-1)*50=-50

Tui zô tri (
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2023 lúc 19:49

a: \(2\dfrac{3}{5}+1\dfrac{2}{5}\cdot\dfrac{31}{2}\)

\(=\dfrac{13}{5}+\dfrac{7}{5}\cdot\dfrac{31}{2}\)

\(=\dfrac{26}{10}+\dfrac{217}{10}=\dfrac{243}{10}\)

b: \(4\dfrac{3}{4}-3\dfrac{2}{3}:1\dfrac{1}{6}\)

\(=\dfrac{19}{4}-\dfrac{11}{3}:\dfrac{7}{6}\)

\(=\dfrac{19}{4}-\dfrac{11}{3}\cdot\dfrac{6}{7}\)

\(=\dfrac{19}{4}-\dfrac{22}{7}\)

\(=\dfrac{19\cdot7-22\cdot4}{28}=\dfrac{45}{28}\)

Nguyễn Cảnh Tùng
Xem chi tiết
Nguyễn Quốc Phương
8 tháng 3 2016 lúc 22:24

=99:100

ai k minh minh k lai cho

đo thanh sơn
8 tháng 3 2016 lúc 22:20

đáp số: 99:100

Nguyễn Hữu Đạt
8 tháng 3 2016 lúc 22:32

đáp số: 99;100

k cho mình nha

Lê Thị Hoài Thanh
Xem chi tiết
Nguyễn Hoàng Gia Bảo
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 4 2021 lúc 13:05

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}\)

\(\Rightarrow2A=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2011}}\)

\(\Rightarrow2A-A=2-\dfrac{1}{2^{2012}}\)

\(\Rightarrow A=2-\dfrac{1}{2^{2012}}\)

\(A= 1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\)\(\dfrac{1}{2^{2012}}\)

\(2A=2+1+\dfrac{1}{2}+...+\)\(\dfrac{1}{2^{2012}}\)

\(2A-A=(2+1+\dfrac{1}{2}+...+\)\(\dfrac{1}{2^{2012}}\))\(-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\right)\)

\(A=2-\)\(\dfrac{1}{2^{2012}}\)

Nguyễn Ngọc Linh
Xem chi tiết
Thanh Tùng DZ
1 tháng 8 2017 lúc 21:24

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}\)\

\(A=\frac{1}{2014}\)

Nguyễn Gia Huy
Xem chi tiết

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1

Bùi Trần Khánh Huyền
Xem chi tiết

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1