Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
madara

Giá trị của biểu thức:

A=1/1+2 + 1/1+2+3 + 1/1+2+3+4 + ... + 1/1+2+3+...+99 +1/50

giup dum like cho

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1


Các câu hỏi tương tự
Lê Thị Hoài Thanh
Xem chi tiết
Nguyễn Gia Huy
Xem chi tiết
Bùi Trần Khánh Huyền
Xem chi tiết
Lan Anh Nguyễn
Xem chi tiết
Do Minh Duc
Xem chi tiết
Manh Ho xuan
Xem chi tiết
Đặng Quốc Thắng
Xem chi tiết
AN
Xem chi tiết
Trần Hữu Thanh
Xem chi tiết