tìm giá trị x để:
A=|x-3|+50 có giá trị nhỏ nhất
B=2015-|x+5| có giá trị lớn nhất
Tìm x thuộc Z
/x-3/+50 có giá trị nhỏ nhất
2015-/x+5/ có giá trị lớn nhất
Gạch chéo là giá trị tuyệt đối nhé
Mong giải đầy đủ giúp mình nhé!gấp lắm
Cho biểu thức E = 3-x/x-1. Tìm các giá trị của x để:
a. E có giá trị nguyên
b. E có giá trị nhỏ nhất
a: Để E nguyên thì -x+3 chia hết cho x-1
=>-x+1+2 chia hết cho x-1
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
b: \(E=\dfrac{-\left(x-3\right)}{x-1}=\dfrac{-\left(x-1-2\right)}{x-1}=-1+\dfrac{2}{x-1}\)
Để E min thì x-1=-1
=>x=0
Cho M=8-x/x+3 . Tìm các giá trị nguyên của x để:
a) M có giá trị nguyên
b) M có giá trị lớn nhất
a) Ta có: \(M=\dfrac{8-x}{x+3}=\dfrac{-\left(x+3\right)+11}{x+3}=-1+\dfrac{11}{x+3}\) (ĐK: \(x\ne-3\))
Để \(M\in Z\) thì \(\left(x+3\right)\inƯ\left(11\right)=\left\{1;-1;11;-;11\right\}\)
\(\Rightarrow x\in\left\{-2;-4;8;-14\right\}\) (TMĐK)
Vậy \(x\in\left\{-2;-4;8;-14\right\}\) thì \(M\in Z\)
cho x,y thuộc Z :
a) với giá trị nào của x thì biểu thức :
A = 1000 - | x - 5 | có giá trị lớn nhất . tìm giá trị lớn nhất đó
b) với giá trị nào của y thì biểu thức :
B = | y - 3 | + 50 có giá trị nhỏ nhất.tìm giá trị nhỏ nhất
c) với giá trị nào của x,y thì biểu thức
C = | x - 100 | + | y + 200 | - 1 có giá trị nhỏ nhất . tìm giá trị nhỏ nhất đó
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Khó vậy bạn
Mình mới lớp 7
Ai cho mình xin k nhé
Thanks
Thắng Nguyễn làm đúng rồi đấy các bn, tham khảo nha
a,Với giá trị nào của x thì biểu thức A = 20 - | x+5 | ,có giá trị lớn nhất, tìm giá trị lớn nhất đó.
b,Với giá trị nào của x thì biểu thức B = | y-3 | + 50 ,có giá trị nhỏ nhất, tìm giá trị của nó.
c,Với giá trị nào của x và y thì biểu thức C = | x-100 | + | y+200 | -1 có giá nhỏ nhất. Tìm giá trị của nó.
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi
a,Vì \(|x+5|\ge0\) với \(\forall x\)
=>\(A\le20\)
Dấu bằng xảy ra \(\Leftrightarrow x+5=0\)
x=-5
Vậy Max A=20 khi x=-5
a, Vì /x+5/ >= 0 nên để A lớn nhất thì /x+5/ phải nhỏ nhất nên /x+5/ = 0 nên x=-5
Vậy A=20-/-5+5/=20-0=20
b,c Tương tự câu a
cho x,y là các số nguyên:
a) Tìm giá trị nhỏ nhất của A=|x+2|+50
b) Tìm giá trị nhỏ nhất của B=|x-100|+| y+200|-1
c) Tìm giá trị lớn nhất của 2015-|x+5|
a, Ta có: \(\left|x+2\right|\ge0\Rightarrow A=\left|x+2\right|+50\ge50\)
Dấu "=" xảy ra khi x=-2
Vậy GTNN của A=50 khi x=-2
b, Ta có: \(\left|x-100\right|\ge0;\left|y+200\right|\ge0\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\Rightarrow B=\left|x-100\right|+\left|y+200\right|-1\ge-1\)
Dấu "=" xảy ra khi x=100,y=-200
Vậy GTNN của B=-1 khi x=100,y=-200
c, Đặt C = 2015-|x+5|
Ta có: \(\left|x+5\right|\ge0\Rightarrow-\left|x+5\right|\le0\Rightarrow C=2015-\left|x+5\right|\le2015\)
Dấu "=" xảy ra khi x=-5
Vậy GTLN của C = 2015 khi x = -5
cho A(0;6), B(2;5). Tìm trên (d): x-2y+2=0 điểm M sao cho
a) MA+MB có giá trị nhỏ nhất
b) I MA -MB I có giá trị lớn nhất.
\(T=\left(x_A-2y_A+2\right)\left(x_B-2y_B+2\right)=60>0\)
=> A và B nằm cùng phía so với d
a)Lấy B' đối xứng với B qua d
=> d là trung trực của BB'
Có \(MA+MB=MA+MB'\)
Để MA+MB nn <=> MA+MB' nhỏ nhất <=> M;A;B' thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB'}\) cùng phương
\(BB'\left\{{}\begin{matrix}quaB\left(2;5\right)\\\perp d\Rightarrow vtcp\overrightarrow{n}\left(2;1\right)\end{matrix}\right.\)
\(\Rightarrow BB':2x+y-9=0\)
Gọi \(F=BB'\cap d\) \(\Rightarrow F\left(\dfrac{16}{5};\dfrac{13}{5}\right)\)
F là trung điểm của BB' \(\Rightarrow B'\left(\dfrac{22}{5};\dfrac{1}{5}\right)\)
\(M\in\left(d\right)\Rightarrow M\left(2t-2;t\right)\)
\(\Rightarrow\overrightarrow{AB'}\left(\dfrac{22}{5};-\dfrac{29}{5}\right)\);\(\overrightarrow{AM}\left(2t-2;t-6\right)\)
\(\overrightarrow{AM};\overrightarrow{AB'}\) cp <=> \(\dfrac{22}{5}\left(t-6\right)=-\dfrac{29}{5}\left(2t-2\right)\)
<=>\(t=\dfrac{19}{8}\)
Vậy \(M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)
b) Có \(MA-MB\le AB\)
\(\Leftrightarrow\left|MA-MB\right|\le AB\)
\(\left|MA-MB\right|\) lớn nhất <=> M;A;B thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB}\) cp
\(M\in\left(2t-2;t\right)\)
\(\Rightarrow\overrightarrow{AM}\left(2t-2;t-6\right)\); \(\overrightarrow{AB}\left(2;-1\right)\)
\(\overrightarrow{AM};\overrightarrow{AB}\) cp <=> \(-1\left(2t-2\right)=2\left(t-6\right)\)
\(\Leftrightarrow t=\dfrac{7}{2}\)
\(\Rightarrow\) \(M\left(5;\dfrac{7}{2}\right)\)
Tìm giá trị nguyên dương của x để đa thức sau có giá trị nhỏ nhất
B= /x-3/ + /x+4/
B=|3-x|+|x+4|>=|3-x+x+4|=7
Dấu = xảy ra khi -4<=x<=3