Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lan Nhi Nguyễn
Xem chi tiết
Con Nhộng Con
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 3 2018 lúc 8:55

Chọn D

Lan Nhi Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 2 2022 lúc 16:18

Đường tròn (C) tâm O(0;0) bán kính R=1

Phương trình đường thẳng IO có dạng: \(y=x\)

Do A;B là giao điểm của 2 đường tròn \(\Rightarrow AB\perp IO\)

Gọi H là trung điểm AB \(\Rightarrow H\in OI\) ; \(AH=\dfrac{AB}{2}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow OH=\sqrt{OA^2-AH^2}=\sqrt{1-\dfrac{1}{2}}=\dfrac{\sqrt{2}}{2}\)

Do H thuộc OI nên tọa độ có dạng: \(H\left(x;x\right)\Rightarrow OH=\sqrt{x^2+x^2}=\sqrt{2x^2}\)

\(\Rightarrow\sqrt{2x^2}=\dfrac{\sqrt{2}}{2}\Rightarrow x=\pm\dfrac{1}{2}\) \(\Rightarrow\left[{}\begin{matrix}H\left(\dfrac{1}{2};\dfrac{1}{2}\right)\\H\left(-\dfrac{1}{2};-\dfrac{1}{2}\right)\end{matrix}\right.\)

Đường thẳng AB qua H và vuông góc OI nên nhận \(\left(1;1\right)\) là 1 vtpt có dạng:

\(\left[{}\begin{matrix}1\left(x-\dfrac{1}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\\1\left(x+\dfrac{1}{2}\right)+1\left(y+\dfrac{1}{2}\right)=0\end{matrix}\right.\)  \(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x+y+1=0\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 9 2018 lúc 13:06

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 2 2017 lúc 5:03

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 11 2018 lúc 18:28

NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Hồng Phúc
11 tháng 4 2021 lúc 14:46

Bán kính đường tròn: \(R=\sqrt{10}\)

\(O=\left(2;0\right)\) là tâm đường tròn

\(\Rightarrow OM=\sqrt{\left(1-2\right)^2+\left(-2-0\right)^2}=\sqrt{5}< R=\sqrt{10}\)

\(\Rightarrow M\) nằm trong đường tròn

Kết luận: Số tiếp tuyến kẻ được từ M đến đường tròn (C) là 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 10 2017 lúc 4:28

Gọi I( x; y). Ta có  A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .

Do I là tâm đường tròn ngoại tiếp tam giác ABC nên  I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2

⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 y − 4 2 = y + 2 2 ⇔ x + 4 2 = x − 2 2 + ( 1 − 4 ) 2 y = 1 ⇔ x 2 + ​ 8 x + 16 = x 2 − 4 x + 4 + ​ 9 y = 1 ⇔ x = − 1 4 y = 1 .

Chọn B.