Tam giác ABC có A B = 5 , B C = 8 , C A = 6 . Gọi G là trọng tâm tam giác. Độ dài đoạn thẳng BG bằng bao nhiêu?
A. 6.
B. 142 3
C. 142 2
D. 4.
Cho tam giác ABC có A(1; 3; 5), B(-4; 0; -2), C(3; 9; 6). Gọi G là trọng tâm tam giác ABC. Trong những khẳng định dưới đây, khẳng định nào sai?
A. Tọa độ của điểm G là (0;4;3)
B. AG ⊥ BC
C. Phương trình tham số của đường thẳng OG là: x = 0, y = 4t, z = 3t
D. Đường thẳng OG nằm trong hai mặt phẳng: (P): x = 0, (Q): 3y - 4z = 0
Bài 4. Cho tam giác ABC cân tại A có AB cm = 5 , BC cm = 6 . Vẽ AH là tia phân giác của góc BAC ( H thuộc BC ). a) Chứng minh: = ABH ACH . b) Tính AH ? c) Gọi G là trọng tâm của tam giác ABC . Tính GH ?
Bài 5. Cho tam giác MNP cân tại P có PM cm = 5 , MN cm = 6 . Vẽ PH là tia phân giác của góc MPN ( H thuộc MN ). a) Chứng minh: = MPH NPH . b) Tính PH ? c) Gọi G là trọng tâm của tam giác MNP . Tính HG
Cho tam giác ABC có a = 7, b = 8, c = 5. Gọi AD là phân giác trong của góc A. Tính AD.
A. 5,2
B. 5,3
C. 5,4
D. 5,5
Chọn B.
+ Tính S:
Ta có nửa chu vi tam giác là p = (7 + 8 + 5) : 2 = 10
Suy ra:
+ Tính góc A:
Ta có:
+ Tính AD:
Ta có: SABD= ½.AB. AD.sin(A/2) = ½.5.AD.sin300 = 5/4 AD
SACD= ½AC. AD.sin(A/2) = ½.5.AD.sin300 = 2AD
Mà: S = SABD+ SACD
Nên hay suy ra
Cho tam giác abc, gọi a' là điểm đối xứng của a qua c, b' là điểm đối xứng của b qua a, c' là điểm đối xứng của c qua b. Cho bm là trung tuyến của tam giác abc, b' m' là trung tuyến của tam giác a' b' c' . Gọi g là giao của bm và b' m' là g. Cmr g là trọng tâm của gai tam giác abc và a'b' c'
Cho ba điểm A(4; 3), B(2; 7) và C(-3; -8).
a, Tìm tọa độ trọng tâm G và trực tâm H của tam giác ABC;
b, Gọi T là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh T, G và H thẳng hàng.
c, Viết phương trình đường tròn ngoại tiếp tam giác ABC.
a)
– Tọa độ trọng tâm G của tam giác ABC là:
– Tọa độ trực tâm H của tam giác ABC:
Cách 1:
+ Phương trình đường cao BD:
BD ⊥ AC ⇒ Đường thẳng BD nhận là một vtpt
BD đi qua B(2; 7)
⇒ Phương trình đường thẳng BD: 7(x - 2) +11(y - 7) = 0 hay 7x + 11y – 91 = 0
+ Phương trình đường cao CE:
CE ⊥ AB ⇒ Đường thẳng CE nhận là một vtpt
CE đi qua C(–3; –8)
⇒ Phương trình đường thẳng CE: 1(x + 3) – 2(y + 8)=0 hay x – 2y – 13 = 0.
Trực tâm H là giao điểm của BD và CE nên tọa độ của H là nghiệm của hpt:
Cách 2: Gọi H(x, y) là trực tâm tam giác ABC
Từ (1) và (2) ta có hệ phương trình
b) Gọi T(x; y) là tâm đường tròn ngoại tiếp tam giác ABC
Khi đó TA = TB = TC = R.
+ TA = TB ⇒ AT2 = BT2
⇒ (x – 4)2 + (y – 3)2 = (x – 2)2 + (y – 7)2
⇒ x2 – 8x + 16 + y2 – 6y + 9 = x2 – 4x + 4 + y2 – 14y + 49
⇒ 4x – 8y = –28
⇒ x – 2y = –7 (1)
+ TB = TC ⇒ TB2 = TC2
⇒ (x – 2)2 + (y – 7)2 = (x + 3)2 + (y + 8)2
⇒ x2 – 4x + 4 + y2 – 14y + 49 = x2 + 6x + 9 + y2 + 16y + 64
⇒ 10x + 30y = –20
⇒ x + 3y = –2 (2)
Từ (1) và (2) ⇒ x = –5, y = 1 ⇒ T(–5 ; 1).
⇒ T, H, G thẳng hàng.
c) Tâm đường tròn ngoại tiếp ΔABC: T(–5; 1)
Bán kính đường tròn ngoại tiếp ΔABC:
Vậy phương trình đường tròn ngoại tiếp tam giác ABC:
(x + 5)2 + (y – 1)2 = 85
Cho tam giác ABC có A(–1; 1); B(5; –3); C(0; 2). Gọi G là trọng tâm của tam giác ABC. Hãy xác định tọa độ của điểm G1 là điểm đối xứng của G qua trục Oy.
A. G1 (4/3;0)
B. G1 (-4/3;3)
C. G1 (-4/3;2)
D. G1 (-4/3;0)
Do G là trọng tâm tam giác ABC nên tọa độ G:
x G = x A + x B + x C 3 = − 1 + 5 + 0 3 = 4 3 y G = y A + y B + y C 3 = 1 + ( − 3 ) + 2 3 = 0 ⇒ G 4 3 ; 0
Điểm G1 là điểm đối xứng của G qua trục Oy nên G 1 − 4 3 ; 0
Đáp án D
Cho tam giác ABC . Gọi A' là điểm đối xứng với A qua C, B' là điểm đối xứng với B qua A , C' đối xứng C qua B . Gọi Bm là đường trung tuyến của tam giác ABC , B'M' là đường trung tuyến của tam giác A'B'C'.
a ) Chứng minh rằng ABM'M là hình bình hành
b) Gọi G là giao điểm của BM và B'M' . Chứng inh rằng G là Trọng tam của hai tam giác ABC và A'B'C'.
Cho tam giác ABC . Gọi A' là điểm đối xứng với A qua C, B' là điểm đối xứng với B qua A , C' đối xứng C qua B . Gọi Bm là đường trung tuyến của tam giác ABC , B'M' là đường trung tuyến của tam giác A'B'C'.
a ) Chứng minh rằng ABM'M là hình bình hành
b) Gọi G là giao điểm của BM và B'M' . Chứng inh rằng G là Trọng tam của hai tam giác ABC và A'B'C'.
Cho tam giác ABC cân tại A , có AD là đường phân giác
a. c/m tam giác ABD = tam giác ACD
b. gọi G là trọng tâm của tam giác ABC , c/m 3 điểm A , G , D thẳng hàng
c. tính dg , biết AB = 13cm , BC = 10 cm
câu a rất đơn giản, bạn tự làm nhé
b) xét tam giác ABC cân tại A có Ad lừ đường phân giác từ đỉnh => AD là trung tuyến ứng với BC
mà G là trọng tâm của tam giác ABC => A,G,D thẳng hàng
c) vì tam giác abd= tam giác acd (câu a) => DB= DC( 2 cạnh tương ứng) => DB= 1/2 BC = 10cm/2 = 5cm
xét tam giác abc cân tại a có ad là trung tuyến ứng với cạnh đấy => ad là đường cáo ứng với cạnh đáy => ADB = 90o
Áp dụng định lý Pytago cho tam giác ABD vuông tại D ta có AD2 +DB2 = AB2
... bạn tự tính tiếp nhé =.> AD= 12cm
mà G là trọng tâm => DG = 1/3 AD
DG= 12cm/3 = 4cm
vậy DG=4cm(dpcm)
câu a rất đơn giản, bạn tự làm nhé
b) xét tam giác ABC cân tại A có Ad lừ đường phân giác từ đỉnh => AD là trung tuyến ứng với BC
mà G là trọng tâm của tam giác ABC => A,G,D thẳng hàng
c) vì tam giác abd= tam giác acd (câu a) => DB= DC( 2 cạnh tương ứng) => DB= 1/2 BC = 10cm/2 = 5cm
xét tam giác abc cân tại a có ad là trung tuyến ứng với cạnh đấy => ad là đường cáo ứng với cạnh đáy => ADB = 90o
Áp dụng định lý Pytago cho tam giác ABD vuông tại D ta có AD2 +DB2 = AB2
... bạn tự tính tiếp nhé =.> AD= 12cm
mà G là trọng tâm => DG = 1/3 AD
DG= 12cm/3 = 4cm
vậy DG=4cm(dpcm)
Cho đường tròn (O,5) và a là điểm cố định trên đường tròn Gọi B C D là hai điểm di động trên đường tròn sao cho đoạn BC có độ dài không đổi bằng 8. gọi M là trung điểm của BC và G là trọng tâm tam giác ABC. khi B,C thay đổi trên đường tròn (O,5) thì tập hợp các điểm G là:
A. đường tròn có bán kính bằng 3
B. đường tròn có bán kính bằng 2
C. đường tròn có bán kính bằng 4
D. đường tròn có bán kính bằng 5
em đang cần gấp. cảm ơn ạ
Theo t/c đường tròn, do M là trung điểm BC \(\Rightarrow OM\perp BC\)
Áp dụng định lý Pitago:
\(OM=\sqrt{OC^2-CM^2}=\sqrt{R^2-\left(\dfrac{BC}{2}\right)^2}=3\)
\(\Rightarrow\) Quỹ tích M là đường tròn tâm \(\left(O;3\right)\)
Mặt khác do G là trọng tâm tam giác ABC
\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
\(\Rightarrow\) G là ảnh của M qua phép vị tự tâm A tỉ số \(k=\dfrac{2}{3}\)
\(\Rightarrow\) Quỹ tích G là ảnh của \(\left(O;3\right)\) qua phép vị tự tâm A tỉ số \(k=\dfrac{2}{3}\)
\(\Rightarrow\) Quỹ tích G là đường tròn bán kính \(\dfrac{2}{3}.3=2\)