Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Hoài
Xem chi tiết
Tồi
Xem chi tiết
Phạm Khải
Xem chi tiết
Akai Haruma
17 tháng 3 2021 lúc 22:07

Lời giải:

$2x^2+2y^2-x^2y^2-6xy-4x+4y+10=0$

$\Leftrightarrow 2(x^2+y^2-2xy)-x^2y^2-2xy-4(x-y)+10=0$

$\Leftrightarrow 2(x-y)^2-4(x-y)+2-(x^2y^2+2xy+1)+9=0$

$\Leftrightarrow 2(x-y-1)^2+9=(xy+1)^2$
Với $x,y>0$ ta có:

$(xy+1)^2=2(x-y-1)^2+9\geq 9$

$\Leftrightarrow xy+1\geq 3$

$\Leftrightarrow xy\geq 2$

Vậy $xy_{\min}=2$

Dấu "=" xảy ra khi $x-y-1=0$. Kết hợp với $xy=2$ suy ra $x=2; y=1$

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 2 2019 lúc 13:51

rrrge
Xem chi tiết
Lê Tài Bảo Châu
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Trần Thanh Phương
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

cao nam anh
20 tháng 2 2021 lúc 17:33

LOADING...

Khách vãng lai đã xóa
thảo13032007
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2021 lúc 14:41

\(\Leftrightarrow2x^2-x+1=xy+2y\)

\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)

\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)

Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)

Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)

\(\Rightarrow y=14\)

Vậy \(\left(x;y\right)=\left(9;14\right)\)

Phạm Quốc Học
Xem chi tiết
Nguyễn Lê Đức Thành
Xem chi tiết
Mạnh Phan
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 1 2021 lúc 15:57

\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)

\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)

\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)

\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)

\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương