Lời giải:
$2x^2+2y^2-x^2y^2-6xy-4x+4y+10=0$
$\Leftrightarrow 2(x^2+y^2-2xy)-x^2y^2-2xy-4(x-y)+10=0$
$\Leftrightarrow 2(x-y)^2-4(x-y)+2-(x^2y^2+2xy+1)+9=0$
$\Leftrightarrow 2(x-y-1)^2+9=(xy+1)^2$
Với $x,y>0$ ta có:
$(xy+1)^2=2(x-y-1)^2+9\geq 9$
$\Leftrightarrow xy+1\geq 3$
$\Leftrightarrow xy\geq 2$
Vậy $xy_{\min}=2$
Dấu "=" xảy ra khi $x-y-1=0$. Kết hợp với $xy=2$ suy ra $x=2; y=1$