Cho biểu thức
Q = a a 2 − b 2 − 1 + a a 2 − b 2 : b a − a 2 − b 2 vói a > b > 0
a) Rút gọn Q.
b) Xác định giá trị của Q khi a = 3b.
Bài 1: Cho biểu thức A= \(\dfrac{3}{2x+6}\) - \(\dfrac{x-6}{2x^2+6x}\)
a) Rút gọn biểu thức A
b) Tính giá trị của biểu thức A tại x=\(\dfrac{1}{2}\)
Bài 2: Cho biểu thức A= \(\dfrac{5x+2}{3x^2+2x}\) + \(\dfrac{-2}{3x+2}\) với x ≠ 0 và x ≠ \(\dfrac{-2}{3}\)
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A tại x=\(\dfrac{1}{3}\).
1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)
\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)
\(=\dfrac{1}{x}\)
Vậy \(A=x\)
b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)
Vậy...
2/a,
\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)
\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)
\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)
\(=\dfrac{3x+2}{x\left(3x+2\right)}\)
\(=\dfrac{1}{x}\)
Vậy....
b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)
Vậy..
1,cho các số thực a,b,c ko âm thỏa mãn : a+b+c=3. Tìm GTLN của biểu thức : Q= (a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2)
2,cho số thực \(a\ge4\).Tìm GTNN của biểu thức S= \(a+\frac{1}{a}\)
2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)
Áp dụng BĐT AM-GM ta có:
\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)
\(S=\frac{17}{4}\Leftrightarrow a=4\)
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?
\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)
\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)
Dấu "=" xảy ra khi a = 4
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
bài 1: Cho biểu thức \(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\)
a, rút gọn biểu thức A
b, tìm a để A=1
bài 2 : cho biểu thức \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
a, tìm điều kiện của x để B có nghĩa
b, rút gọn
c, tính giá trị biểu thức B tại x =\(3+2\sqrt{3}\)
bài 3 cho biểu thức \(B=\left(\frac{1}{\sqrt{y}+1}-\frac{3\sqrt{y}}{\sqrt{y}-1}+3\right).\frac{\sqrt{y}+1}{\sqrt{y}+2}\)
a, tìm y để B có nghĩa và rút gọn B
b, tính giá trị của biểu thức B biết y = \(3+2\sqrt{2}\)
GIÚP MÌNH VỚI TỐI MAI ĐI HC RỒI
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
cho biểu thức K = \(\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)
a/ Tìm điều kiện của a để biểu thức K xác định và rút gọn biểu thức K
b/ Tính giá trị biểu thức K khi a=\(\frac{1}{2}\)
cho biểu thức K = \(\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)
a/ Tính giá trị của a để biểu thức K xác định và rút gọn biểu thức K
b/ Tính giá trị biểu thức K khi a = \(\frac{1}{2}\)
\(\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right)=\frac{a^2-1}{a^2-a}=\frac{a+1}{a}\)
ở phàn a+/a thiếu số 1 nhé
\(\frac{1}{a+1}+\frac{2}{a^2-1}=\frac{a-1+2}{a^2-1}=\frac{1}{a-1}\)
=> K =\(\frac{a^2-1}{a}\)
đkxđ: a khác +-1
b, thay vào mà tình
a/ \(K=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)
\(=\left(\frac{a}{a-1}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{1}{a+1}+\frac{2}{\left(a-1\right)\left(a+1\right)}\right)\)
\(=\frac{a^2-1}{a\left(a-1\right)}:\frac{a-1+2}{\left(a-1\right)\left(a+1\right)}\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}.\frac{\left(a-1\right)\left(a+1\right)}{a-1}\)
\(=\frac{a+1}{a}.a+1\)
\(=\frac{\left(a+1\right)^2}{a}\)
b, Thay a=1/2
\(\Rightarrow\frac{\left(\frac{1}{2}+1\right)^2}{\frac{1}{2}}=\frac{\frac{9}{4}}{\frac{1}{2}}=\frac{9}{2}\)
Cho 2 biểu thức:
\(A=1+x+x^2+x^3+..............+x^{2012}\)
\(B=1-x+x^2-x^3+...............-x^{2011}\)
a) Tính giá trị của biểu thức A tại \(x=-1\)
b) Tìm biểu thức C sao cho A=C+B
bài 1: Cho biểu thức \(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\)
a, rút gọn biểu thức A
b, tìm a để A=1
bài 2 : cho biểu thức \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
a, tìm điều kiện của x để B có nghĩa
b, rút gọn
c, tính giá trị biểu thức B tại x =\(3+2\sqrt{3}\)
bài 3 cho biểu thức \(B=\left(\frac{1}{\sqrt{y}+1}-\frac{3\sqrt{y}}{\sqrt{y}-1}+3\right).\frac{\sqrt{y}+1}{\sqrt{y}+2}\)
a, tìm y để B có nghĩa và rút gọn B
b, tính giá trị của biểu thức B biết y = \(3+2\sqrt{2}\)
GIÚP MÌNH TỐI MAI ĐI HC RỒI
bài 1: a) \(A=\frac{\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right)}{\frac{a+2}{a-2}}\)
\(A=\left(\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\frac{a+2}{a-2}\)
\(A=\left(\frac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\right)\cdot\frac{a-2}{a+2}\)
\(A=2\cdot\frac{a-2}{a+2}\left(a\ne0;a\ne\pm2\right)\)
b) để A = 1 => \(2\cdot\frac{a-2}{a+2}=1\)
=> 2a - 4 = a + 2
=> a = 6 (thỏa mãn)
bài 2) a) ĐKXĐ: \(x\ne4\)
b) \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(\Leftrightarrow B=\frac{2\sqrt{x}+\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow B=\frac{2\sqrt{x}+4}{x-4}=\frac{2}{\sqrt{x}-2}\)
c) \(B=\frac{2}{\sqrt{3+2\sqrt{3}}-2}\) \(\approx3,69\)
(bạn tự bấm máy tính nhé nhưng theo mình thấy nếu x = 4 + 2\(\sqrt{3}\) hay \(3+2\sqrt{2}\) thì sẽ cho kết quả đẹp hơn, k biết bạn có nhầm đề k nữa!)
bài 3)
a, \(B=\left(\frac{1}{\sqrt{y}+1}-\frac{3\sqrt{y}}{\sqrt{y}-1}+3\right)\cdot\frac{\sqrt{y}+1}{\sqrt{y}+2}\left(y\ne1;y\ne4\right)\)
\(\Leftrightarrow B=\frac{\sqrt{y}-1-3y-3\sqrt{y}+3y-3}{y-1}\cdot\frac{\sqrt{y}+1}{\sqrt{y}+2}\)
\(\Rightarrow B=\frac{-2\sqrt{y}-4}{\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}\cdot\frac{\sqrt{y}+1}{\sqrt{y}+2}\Rightarrow B=\frac{-2}{\sqrt{y}-1}\)
b) y = \(3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)
=> B = \(\frac{-2}{\sqrt{\left(1+\sqrt{2}\right)^2}-1}\)
\(\Rightarrow B=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
Cho 2 biểu thức:
\(A=1+x+x^2+x^3+.................+x^{2012}\)
\(B=1-x+x^2-x^3+..............-x^{2011}\)
a) Tính giá trị của biểu thức A tại x=-1
b) Tìm biểu thức C sao cho A=C+B
a) Ta có :
A = ( 1 + x2 + x4 + ... + x2012 ) + ( x + x3 + x5 + ... + x2011 )
⇔ A = ( 1 + 1 + 1 + ... + 1 ) + ( - 1 - 1 - 1 - ... - 1 )
⇔ A = 1007 - 1006 = 1
b) Ta có :
A = C + B ⇒ C = A - B
C = ( 1 + x + x2 + x3 + ... + x2012 ) - ( 1 - x + x2 - x3 + ... -x2011 )
= 1+ x + x2 + ... + x2012 - 1 + x - x2 + ... + x2011
= 2 ( x + x3 + x5 + x2011 ) + x2012
Cho 2 biểu thức:
\(A=1+x+x^2+x^3+.................+x^{2012}\)
\(B=1-x+x^2-x^3+..............-x^{2011}\)
a) Tính giá trị của biểu thức A tại x=-1
b) Tìm biểu thức C sao cho A=C+B
a,cho biểu thức A=3*x^2*y^3-1/2*x^3*y^2 và B=25*x^2*y^2. Không thực hiện phép tính chứng tỏ rằng đa thức A chia hết cho đơn thức B. b) Hãy thu gọn Q=(x^3-x^2):(x-1)
c) Tính giá trị của biểu thức Q=(x^3-x^2):(x-1) tại x=-1