a) Ta có :
A = ( 1 + x2 + x4 + ... + x2012 ) + ( x + x3 + x5 + ... + x2011 )
⇔ A = ( 1 + 1 + 1 + ... + 1 ) + ( - 1 - 1 - 1 - ... - 1 )
⇔ A = 1007 - 1006 = 1
b) Ta có :
A = C + B ⇒ C = A - B
C = ( 1 + x + x2 + x3 + ... + x2012 ) - ( 1 - x + x2 - x3 + ... -x2011 )
= 1+ x + x2 + ... + x2012 - 1 + x - x2 + ... + x2011
= 2 ( x + x3 + x5 + x2011 ) + x2012