Tìm x:\(\left|x+1\right|+\left|x+2\right|+...+\left|x+100\right|=605x\)
Tìm x biết:\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+...+\left|x+100\right|=605x\)
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+100\right|=605x\)(1)
Vì \(VT>0\forall x\)
\(\Rightarrow VP>0\Leftrightarrow605x>0\Leftrightarrow x>0\)
Khi đó \(\left(1\right)\Leftrightarrow x+1+x+2+...+x+100=605x\)
\(\Leftrightarrow100x+5050=605x\)
\(\Leftrightarrow505x=5050\)
\(\Leftrightarrow x=10\)( thỏa mãn )
Vậy....
tìm x biết
a)\(x+2x+3x+4x+...+2015x=2016\times2017\)
b)\(1-3+3^2-3^3+...+\left(-3\right)^x=\frac{9^{1008}-1}{4}\)
c)\(\left|x+1\right|+\left|x+2\right|+...+\left|x+100\right|=605x\)
d)tìm x nguyên biết \(\left|x-1\right|+\left|x-2\right|+...+\left|x-100\right|=2500\)
e) tìm x nguyên biết \(2004=\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+99x\right|+\left|x+1000\right|\)
tìm x \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)+...+\left(x+99\right)+\left(x+100\right)=5750\)
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
\(\left(x\cdot100\right)+\left(1+2+...+100\right)=5750\)
\(\left(x\cdot100\right)+\left(100+1\right)\cdot\frac{100}{2}=5750\)
\(\left(x\cdot100\right)+101\cdot50=5750\)
\(\left(x\cdot100\right)+5050=5750\)
\(x\cdot100=5750-5050\)
\(x\cdot100=700\)
\(x=700\div100\)
\(x=7\)
Ta có: ( x+1)+(x+2)+(x+3)+.....+(x+99)+(x+100)=5750
<=>(x+x+x+....+x+x)+(1+2+3+..+99+100)=5750
<=> 100x+5050=5750
=>100x=5750-5050
=>100x=700
=>x=700:100
=>x=7
Vậy x=7
hoặc mở câu hỏi tương tự tham khảo.
câu 1: giải hệ phương trình
\(\left(x+y\right)^2+\left(y+z\right)^4+....+\left(x+z\right)^{100}=-\left(y+z+x\right)\)
\(\left(xy\right)^2+2\left(yz\right)^4+....+100\left(zx\right)^{100}=-[\left(x+y+z\right)+2\left(yz+zx+xy\right)+......+99\left(x+y+z\right)]\)\(\left(\frac{1}{x}+\frac{1}{y}\right)^2+\left(\frac{1}{y^2}+\frac{1}{z^2}\right)^2+...+\left(\frac{1}{x^{99}}+\frac{1}{z^{99}}\right)^2=-\frac{1}{\left(xy\right)^2+2\left(yz\right)^2+.....+99\left(zx\right)^2}\)
tìm x,y,z
Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:
ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\) nên phương trình 1 vô lý
tương tự chứng minh phương trinh 2 và 3 vô lý
vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)
thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm
\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)
Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)
Ta dễ dàng nhận thấy tất cả số mũ đều chẵn
\(=>A\ge0\)(1)
Đặt : \(B=-\left(y+z+x\right)\)
\(=>B\le0\)(2)
Từ 1 và 2 \(=>A\ge0\le B\)
Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)
Do \(B=0< =>y+z+x=0\)(3)
\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)
Từ 3 và 4 \(=>x=y=z=0\)
Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}
Đặt :\(\left(xy\right)^2+2\left(yz\right)^4+...+100\left(zx\right)^{100}=A\)
Ta thấy các số mũ đều chẵn
Nên \(A\ge0\left(1\right)\)
Đặt : \(-\left[\left(x+y+z\right)+2\left(yz+zx+xy\right)+...+99\left(x+y+z\right)\right]=B\)
Vì có dấu âm ở trước VT
Nên \(B\le0\left(2\right)\)
Từ 1 và 2 <=> \(A=B=0\)
\(< =>x=y=z=0\)
\(Tìm\) \(x\)∈\(Z\)\(,\) \(biết\)\(:\)
\(a\)) \(\left(x-20\right)+\left(x-19\right)+\left(x-18\right)+...+99+100=100\)
\(b\)) \(213-x.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\right):\left(1-\dfrac{1}{2^{2020}}\right)=13\)
a) Quy luật là gì ??
b)
Đặt
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\\\Rightarrow2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2019}}\\ \Rightarrow2A-A=1-\dfrac{1}{2^{2020}}\Rightarrow A=1-\dfrac{1}{2^{2020}}\)
Suy ra , phương trình trở thành :
213 -x =13
<=> x=200
Tìm x
a) \(\left(x-1\right)+\left(x-2\right)+\left(x-3\right)+.....+\left(x-100\right)=101\)
b) \(x+2x+3x+....+100x=1000\)
c) \(x+1+2\left(x+2\right)+3\left(x+3\right)+...+100\left(x+100\right)=101^2\)
d) \(\frac{1+x}{1}+\frac{1+x}{2}+\frac{1+x}{3}+...+\frac{1+x}{30}=0\)
e) \(\left(1+\frac{x}{1}\right)\left(2-\frac{x}{2}\right)\left(3-\frac{x}{3}\right)=0\)
BẠN NÀO BIẾT PHẦN NÀO THÌ GIÚP MIK NHÉ!
Thank!!
a) (x-1)+(x-2)+(x-3)+...+(-100)=101
(x+x+x+...+x)-(1+2+3+...+100)=101
=> 100x-5050=101
100x=101+5050
100x=5151
x=5151:100
x=5151/100
A=\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+9\right)\left(x+100\right)}\)
thực hiện phép tính
Phân thức cuối hình như mẫu sai rồi bạn
Phải là (x+9)(x+10) mới đúng chứ
Nếu đề bài đúng thì sẽ làm như sau:
A = \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+9\right)\left(x+100\right)}\) (ĐKXĐ tự tìm nhé, chứ viết dài lắm)
A = \(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+9}-\frac{1}{x+100}\)
A = \(\frac{1}{x}-\frac{1}{x+100}\)
A = \(\frac{x+100-x}{x\left(x+100\right)}\)
A = \(\frac{100}{x\left(x+100\right)}\)
Vậy A = \(\frac{100}{x\left(x+100\right)}\)
Chúc bn học tốt!!
c)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)+\left(x+5\right)=90\)
d)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+.....+\left(x+99\right)+\left(x+100\right)+=20150\)
c) (x+1) + (x+2) + ... + (x+5) = 90
=> 5x + ( 1 + 2 + ... + 5 ) = 90
5x + 15 = 90
5x = 90 - 15
5x = 75
x = 75 : 5
x = 15
d) (x+1) + (x+2) + .... + (x+100) = 20150
=> 100x + ( 1+2+...+100 ) = 20150
100x + 5050 = 20150
100x = 20150 - 5050
100x = 15100
x = 15100 : 100
x = 151
Ta có : (x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5) = 90
<=> x + x + x+ x + x + (1 + 2 + 3 + 4 + 5) = 90
<=> 5x + 15 = 90
=> 5x = 75
=> x = 15
c) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)+\left(x+5\right)=90\)
\(\Leftrightarrow x+1+x+2+x+3+x+4+x+5=90\)
\(\Leftrightarrow5x+\left(1+2+3+4+5\right)=90\)
\(\Leftrightarrow5x+15=90\)
\(\Leftrightarrow5x=75\)
\(\Leftrightarrow x=15\)
d) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+......+\left(x+99\right)+\left(x+100\right)=20150\)
\(\Leftrightarrow x+1+x+2+x+3+......+x+99+x+100=20150\)
\(\Leftrightarrow100x+\left(1+2+3+.....+99+100\right)=20150\)
\(\Leftrightarrow100x+5050=20150\)
\(\Leftrightarrow100x=15100\)
\(\Leftrightarrow x=151\)
Tìm x, biết
\(\frac{1}{x\left(x+1\right)}\)+ \(\frac{1}{\left(x+1\right)\left(x+2\right)}\)+ ... + \(\frac{1}{\left(x+99\right)\left(x+100\right)}\)= \(\frac{100}{101}\)
=> ĐK: \(x\ne\left\{0;-1;-2;...;-99;-100\right\}\)
Đây là dạng dãy số đặc biệt, bạn có thể giải như sau:
Ta có:
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}=\frac{100}{101}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{100}{101}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+100}=\frac{100}{101}\)
\(\Leftrightarrow\frac{x+100-x}{x.\left(x+100\right)}=\frac{100}{101}\)
\(\Leftrightarrow\frac{100}{x^2+100x}=\frac{100}{101}\)
\(\Leftrightarrow x^2+100x=101\)
\(\Leftrightarrow x^2+100x-101=0\)
\(\Leftrightarrow x^2+101x-x-101=0\)
\(\Leftrightarrow x\left(x+101\right)-\left(x+101\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+101\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+101=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(n\right)\\x=-101\left(n\right)\end{cases}}\)
Vậy: S={1;-101)