Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
LÂM 29
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 21:55

\(xy+x+1=3y\Rightarrow x+\dfrac{1}{y}+\dfrac{x}{y}=3\)

Ta có:

\(x^3+1+1\ge3x\)

\(\dfrac{1}{y^3}+1+1\ge\dfrac{3}{y}\)

\(x^3+\dfrac{1}{y^3}+1\ge\dfrac{3x}{y}\)

Cộng vế:

\(2\left(x^3+\dfrac{1}{y^3}\right)+5\ge3\left(x+\dfrac{1}{y}+\dfrac{x}{y}\right)=9\)

\(\Rightarrow x^3+\dfrac{1}{y^3}\ge2\)

\(\Rightarrow x^3y^3+1\ge2y^3\) (đpcm)

Dấu "=" xảy ra khi \(x=y=1\)

LÂM 29
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 21:27

\(x^3+y^3+y^3\ge3\sqrt[3]{x^3.y^3.y^3}=3xy^2\)

\(x^3+1+1\ge3x\)

\(2\left(y^3+1+1\right)\ge6y\)

Cộng vế:

\(2\left(x^3+2y^3\right)+6\ge3\left(x+2y+xy^2\right)=12\)

\(\Rightarrow x^3+2y^3\ge3\) (đpcm)

Dấu "=" xảy ra khi \(x=y=1\)

Kwalla
Xem chi tiết
HT.Phong (9A5)
28 tháng 9 2023 lúc 18:10

Ta có:

\(x^3+x^2z-xyz+y^2z+y^3\)

\(=\left(x^3+y^3\right)+\left(x^2z-xyz+y^2z\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)

\(=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)

\(=0\cdot\left(x^2-xy+y^2\right)\)

\(=0\left(dpcm\right)\)

LÂM 29
Xem chi tiết
Trịnh Xuân Minh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 12 2019 lúc 7:43

Với x ≥ 0; y ≥ 0 thì x + y ≥ 0

Ta có: x3 + y3 ≥ x2y + xy2

⇔ (x3 + y3) – (x2y + xy2) ≥ 0

⇔ (x + y)(x2 – xy + y2) – xy(x + y) ≥ 0

⇔ (x + y)(x2 – xy + y2 – xy) ≥ 0

⇔ (x + y)(x2 – 2xy + y2) ≥ 0

⇔ (x + y)(x – y)2 ≥ 0 (Luôn đúng vì x + y ≥ 0 ; (x – y)2 ≥ 0)

Dấu « = » xảy ra khi (x – y)2 = 0 ⇔ x = y.

Setsuna
Xem chi tiết
Aug.21
24 tháng 6 2019 lúc 12:41

Từ x > y > 0 ta có:
\(x>y\Rightarrow xy>y^2\)            (1)

\(x>y\Rightarrow x^2>xy\)        (2)

Từ (1) và (2) suy ra x2 > y2.
\(x^2>y^2\Rightarrow x^3>xy^2\)        (3)

\(x>y\Rightarrow xy^2>y^3\)           (4)

Từ (3) và (4) suy ra x3 > y3.
 

kham khảo

Câu hỏi của Nguyễn Huy Hải - Toán lớp 7 - Học toán với OnlineMath

vào thống kê hỏi đáp của mk

hc tốt

trả lời 

Câu hỏi của Nguyễn Huy Hải - Toán lớp 7 - Học toán với OnlineMath

cách thức như trên 

hc tốt

LÂM 29
Xem chi tiết
LÂM 29
Xem chi tiết