*) Từ x > y > 0 ta có:
x > y ⇒ xy > y2 (1)
x > y ⇒ x2 > xy (2)
*) Từ (1) và ( 2 ) suy ra x2 > y2.
x2 > y2 ⇒ x3 > xy2 (3)
x > y ⇒ xy2 > y3 (4)
Từ (3) và (4) suy ra x3 > y3.
*) Từ x > y > 0 ta có:
x > y ⇒ xy > y2 (1)
x > y ⇒ x2 > xy (2)
*) Từ (1) và ( 2 ) suy ra x2 > y2.
x2 > y2 ⇒ x3 > xy2 (3)
x > y ⇒ xy2 > y3 (4)
Từ (3) và (4) suy ra x3 > y3.
Cho x > y > 0. Chứng minh rằng x3 > y3.
Cho x là số hữu tỉ khác 0, y là số vô tỉ. Chứng minh rằng: x+y; x-y; x.y; \(\frac{x}{y}\) la những số vô tỉ
bài 1:. So sánh: 200920 và 2009200910
bài 2:
Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
bài 3: Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
bài 4:Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
ko khó đâu :))
Chứng minh rằng không tồn tại các số nguyên x,y thỏa mãn \(x^4+y^3+4=0\)
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 5. Chứng minh rằng:
Cho x/z=z/y. Chứng minh rằng x^2+z^2/y^2+z^2=x/y
Cho các số hữu tỉ : \(x=\frac{a}{b};y=\frac{c}{d};z=\frac{a+c}{b+d}\)(a,b,c,d thuộc Z ;b>0 ;d>0 ). Chứng minh rằng;nếu x<y thì x<z<y
Cho hai số nguyên x; y thỏa mãn 3x^2 - 2y^2 = 1: Chứng minh rằng x^2 - y^2 chia hết cho 40
Mình đang cần gấp! Giúp mình với ạ
Bài 3: Chứng minh rằng:
a) (x+y+z)2= x2+y2+z2+2xy+2xz+2yz
b) (x-y).(x2+y2+z2-xy-yz-xz)= x3+y3+z3-3xyz
c) (x+y+z)3= x3+y3+z3+3.(x+y).(y+z).(z+x)