Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 4 2019 lúc 13:28

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 1 2017 lúc 11:16

Ta có: 

Chọn x=1. Ta có tổng hệ số bằng: 

Lại có: 

Số hạng không chứa x suy ra 

Do đó số hạng không chứa x là: 

Chọn D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 2 2018 lúc 5:06

nguyễn hoàng lê thi
Xem chi tiết
Hoàng Tử Hà
12 tháng 12 2020 lúc 23:16

15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)

18/ \(x.x^k=x^7\Rightarrow k=6\)

\(C^6_9.3^6.2^3=489888\)

19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 8 2017 lúc 13:29

Bình Trần Thị
Xem chi tiết
Mysterious Person
3 tháng 8 2018 lúc 10:44

ta có : \(\left(2nx+\dfrac{1}{2nx^2}\right)^{3n}=\sum\limits^{3n}_{k=0}C^k_{3n}\left(2nx\right)^{3n-k}\left(\dfrac{1}{2nx^2}\right)^k\)

\(=\sum\limits^{3n}_{k=0}C^k_{3n}2^{3n-2k}\left(n\right)^{3n-2k}\left(x\right)^{3n-3k}\)

\(\Rightarrow\) tổng hệ số bằng : \(C^0_{3n}+C_{3n}^1+C^2_{3n}+...+C^{3n}_{3n}=64\)

\(\Leftrightarrow\left(1+1\right)^{3n}=64\Leftrightarrow2^{3n}=2^6\Rightarrow n=2\)

để có số hạng không chữa \(x\) không khai triển thì \(3n-3k=0\Leftrightarrow n=k\)

\(\Rightarrow\) hệ số của số hạng không chữa \(x\)\(C^2_6.2^2.2^2=240\)

vậy ...........................................................................................................................

kim sone
Xem chi tiết
Huy Thắng Nguyễn
23 tháng 6 2017 lúc 13:18

1) \(x^3-1=x^3-1^3=\left(x-1\right)\left(x^2+x+1\right)\)

2) \(27x^3-64=\left(3x\right)^3-4^3=\left(3x-4\right)\left(9x^2+12x+4\right)\)

3) \(8x^3+1=\left(2x\right)^3+1^3=\left(2x+1\right)\left(4x^2-2x+1\right)\)

Đức Minh
23 tháng 6 2017 lúc 13:22

Bài 1 : \(x^3-1=\left(x-1\right)\cdot\left(x^2+x+1\right)\)

Bài 2 : \(27x^3-64=27x^3-4^3=\left(3x-4\right)\cdot\left(9x^2+12x+16\right)\)

Bài 3 : \(8x^3+1=\left(2x+1\right)\cdot\left(4x^2-2x+1\right)\)

Tổng hai lập phương:

Hiệu hai lập phương:

nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 18:11

Câu 8 là \(\left(8a^2-\dfrac{1}{2}b\right)^6\) hay \(\left(8a^2-\dfrac{1}{2b}\right)^6\) bạn? (tốt nhất là bạn dùng tính năng gõ công thức toán để đăng đề, hoặc chụp hình gửi đề trực tiếp lên, hiện nay hoc24 đã cho đăng đề bằng hình ảnh)

9.

\(\left(x+8.x^{-2}\right)^9=\sum\limits^9_{k=0}C_9^kx^{9-k}.8^k.x^{-2k}=\sum\limits^9_{k=0}C_9^k8^kx^{9-3k}\)

Số hạng ko chứa x \(\Rightarrow9-3k=0\Rightarrow k=3\)

Số hạng đó là: \(C_9^3.8^3=...\)

Sonyeondan Bangtan
Xem chi tiết
Thanh Nguyễn
Xem chi tiết
Công chúa xinh xắn
11 tháng 1 2018 lúc 21:01

Số hạng trong khai triển có dạng :

\(T_{k+1}=C_6^k.\left(x^2\right)^{6-k}.\left(x^{-1}\right)^k\)

\(=C_6^k.x^{12-2k}.x^{-k}\)

\(=C_6^k.x^{12-3k}\)

Số hạng chứa \(x^9\): \(\Leftrightarrow x^{12-3k}=x^9\)

\(\Leftrightarrow12-3k=9\)

\(\Leftrightarrow3k=12-9\)

\(\Leftrightarrow3k=3\)

\(\Leftrightarrow k=1\)

Hệ số của số hạng chứa \(x^9\)là : \(T_2=C^1_6=6\)