Cho tứ diện đều ABCD cạnh a. Thể tích của khối tứ diện ABCD là
A. 3 a 3 4
B. 3 a 3 12
C. 2 a 3 12
D. 2 a 3 4
Cho tứ diện đều ABCD cạnh a. Thể tích của khối tứ diện ABCD là
Chọn C
Gọi M là trung điểm của CD, H là trọng tâm của tam giác BCD
Cho tứ diện đều ABCD cạnh a. Thể tích của khối tứ diện ABCD là
A. 2 a 3 4
B. 2 a 3 12
C. 3 a 3 12
D. 3 a 3 4
Đáp án B
Gọi M là trung điểm của CD , H là trọng tâm của tam giác BCD.
Ta có AH ⊥ BCD (giả thiết ABCD là tứ diện đều) suy ra
Cho khối tứ diện đều \(ABCD\) cạnh \(a\). Chứng minh rằng thể tích của khối tứ diện đó bằng \(\frac{{{a^3}\sqrt 2 }}{{12}}\).
Gọi \(M\) là trung điểm của \(BC\), \(O\) là trọng tâm tam giác \(ABC\).
\( \Rightarrow SO \bot \left( {ABC} \right)\)
Tam giác \(ABC\) đều
\( \Rightarrow AM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2} \Rightarrow AO = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}\)
Tam giác \(SAO\) vuông tại \(O \Rightarrow SO = \sqrt {S{A^2} - A{O^2}} = \frac{{a\sqrt 6 }}{3}\)
\(\begin{array}{l}{S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{4}\\{V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SO = \frac{{{a^3}\sqrt 2 }}{{12}}\end{array}\)
Cho tứ diện đều ABCD có tất cả các cạnh bằng a. Tính thể tích V của khối tứ diện ABCD
Cho tứ diện đều ABCD có tất cả các cạnh bằng a. Tính thể tích V của khối tứ diện ABCD
A. V = a 3 2 12
B. V = a 3 11 24
C. V = a 3 3 4
D. V = a 3 8
Cho tứ diện đều ABCD có cạnh bằng a. Thể tích của khối cầu tiếp xúc với tất cả các cạnh của tứ diện ABCD bằng
Cho tứ diện đều ABCD có cạnh bằng a. Thể tích của khối cầu tiếp xúc với tất cả các cạnh của tứ diện ABCD bằng
A. 3 a 3 24 .
B. 2 π a 3 24 .
C. 2 2 a 3 9 .
D. 3 π a 3 8 .
Đáp án B
Gọi G là trọng tâm tứ diện ABCD. Ta chứng minh G là tâm mặt cầu tiếp xúc với tất cả các cạnh của tứ diện.
Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, CD, BC, AD, AC, BD.
Ta có G là trung điểm của các đoạn MN, PQ, RS.
Δ A C D = Δ B C D ⇒ A N = B N ⇒ Δ N A B cân tại N ⇒ M N ⊥ A B
Tương tụ ta có M N ⊥ C D .
Ta có: P Q = R S = M N = A N 2 − A M 2 = a 3 2 2 − a 2 4 = a 2 2 .
Suy ra d G , A B = d G , C D = 1 2 M N = a 2 4 .
Chứng minh tương tự ta có d G , A C = d G , A D = d G , B D = d G , B C = a 2 4
Vậy G là tâm mặt cầu tiếp xúc với tất cả các cạnh của tứ diện ABCD.
Bán kính mặt cầu R = a 2 4 . Suy ra thể tích khối cầu là V = 4 3 π R 3 = 4 3 π a 2 4 3 = 2 π a 3 24 .
Cho hình tứ diện đều ABCD có cạnh bằng 3. Gọi G 1 , G 2 , G 3 , G 4 là trọng tâm của bốn mặt của tứ diện ABCD. Tính thể tích V của khối tứ diện G 1 G 2 G 3 G 4 .
A. V = 2 4
B. V = 2 18
C. V = 2 32
D. V = 2 12
Cho hình tứ diện đều ABCD có cạnh bằng 3. Gọi G 1 , G 2 , G 3 , G 4 là trọng tâm của bốn mặt của tứ diện ABCD. Tính thể tích V của khối tứ diện G 1 G 2 G 3 G 4 .
A. V = 2 4
B. 2 18
C. V = 2 32
D. V = 2 12