Cho x, y, z là các số thực dương thỏa 64 1 x + 8 1 y + 4 1 z = 3 . 4 2018 . Giá trị lớn nhất của biểu thức P = 1 x + 4 y + 3 z + 1 2 x + 2 y + 3 z + 1 x + 2 y + 6 z + 3029 2 bằng
A. 2017
B. 2018
C. 2019
D. 2020
cho x,y,zlaf các số thực dương thỏa mãn x+y+z=1 Chứng minh (1+\(\frac{1}{x}\))(1+\(\frac{1}{y}\))(1+\(\frac{1}{z}\))>=64
Áp dụng bđt AM - GM cho 3 số dương x;y;z ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow1\ge3\sqrt[3]{xyz}\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{xyz}\Rightarrow\frac{1}{27}\ge xyz\)
Ta có :\(A=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)=\left(1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}\right)\left(1+\frac{1}{z}\right)\)
\(=1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}+\frac{1}{z}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xyz}\)
\(=1+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{x+y+z}{xyz}+\frac{1}{xyz}\)
\(=1+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{2}{xyz}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng Engel ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}=9\)
Mà \(xyz\le\frac{1}{27}\)\(\Rightarrow A\ge1+9+\frac{2}{\frac{1}{27}}=64\)(đpcm)
Cho \(x,y,z\) là các số thực dương thỏa mãn : \(x+y+z=1\) . CMR :
\(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
Đặt : \(a=2^x;b=2^y;c=2^z\)
Khi đó : \(a,b,c>0;abc=2^{x+y+z}=64\)
Ta cần c/m : \(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^3+32-6a^2=\left(a-4\right)^2\left(a+2\right)\)
Theo đó, ta cần sử dụng giả thiết : \(a>0\), suy ra : \(a^3+32\ge6a^2\)
Thiết lập các bđt tương tự cho b và c và cộng theo vế các bđt tìm được, ta có :
\(a^3+b^3+c^3+96\ge6\left(a^2+b^2+c^2\right)\)
Ta cần c/m thêm : \(6\left(a^2+b^2+c^2\right)\ge4\left(a^2+b^2+c^2\right)+96\)
hay : \(2\left(a^2+b^2+c^2\right)\ge2.3\sqrt[3]{a^2b^2c^2}=6\sqrt[3]{4096}=96\)
\(\Rightarrowđpcm\)
mik làm cách khác,mấy bạn cho điểm nhá!
Sai đề:x+y+z=6
Đặt\(a=2^x,b=2^y,c=2^z\)
\(\Rightarrow abc=2^{x+y+z}=64\)
Áp dụng bất đẳng thức AM-GM,ta được:
\(3\sqrt[3]{abc}\le a+b+c\)
Ta có:\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
Hay \(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Thật vậy:
Áp dụng bất đẳng thức AM-GM một lần nữa,ta được:
\(a^3+a^3+b^3\ge3a^2b\)
\(a^3+a^3+c^3\ge3a^2c\)
\(a^3+b^3+b^3\ge3b^2a\)
\(a^3+c^3+c^3\ge3c^2a\)
\(b^3+b^3+c^3\ge3b^2c\)
\(b^3+c^3+c^3\ge3c^2b\)
Cộng vế theo vế của các bất đẳng thức,ta được:
\(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Dấu "="xẩy ra khi và chỉ khi:\(a=b=c\)
ioi chưa xét dấu = xảy ra khi nào kìa!
Cho x,y,z là các số thực dương thỏa: x+y+z=1. Tìm gtnn M= 1/16+1/4y+1/z
Cho x, y là các số thực dương, z là số thực khác 0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\)
CMR \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\)
Cho x, y là các số thực dương, z là số thực khác 0 thỏa mãn điều kiện \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\). Chứng minh \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\)
Ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow\)\(x+y=x+y-2z+2\sqrt{\left(x-z\right)\left(y-z\right)}\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)
Theo giả thiết, ta có:
theo giả thiết, ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}-\frac{1}{x}=\frac{1}{y}\)\(\Rightarrow\frac{x-z}{zx}=\frac{1}{y}\Rightarrow x-z=\frac{zx}{y}\)
Tương tự, ta có: \(y-z=\frac{zy}{x}\)
Do đó: \(2\sqrt{\left(x-z\right)\left(y-z\right)}=2\sqrt{\frac{zx}{y}.\frac{zy}{x}}=2z\) (1)
ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)(2)
Thay (2) vào (1) ta thấy (2) luôn đúng
Suy ra ĐPCM
Vì \(x>0,y>0\Rightarrow\frac{1}{x}>0;\frac{1}{y}>0\)
mà \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{z}>0\Rightarrow z>0\)
Ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Leftrightarrow yz+zx-xy=0\)
\(\Leftrightarrow-z^2=-z^2+yz+zx-xy=-\left(x-z\right)\left(y-z\right)\)
\(\Leftrightarrow z^2=\left(x-z\right)\left(y-z\right)>0\)
\(\Rightarrow z=\sqrt{\left(x-z\right)\left(y-z\right)}\left(z>0\right)\)
Lại có: \(x+y=x-z+y-z+2z\)
\(=\left(x-z\right)+\left(y-z\right)+2\sqrt{\left(x-z\right)\left(y-z\right)}=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
Suy ra \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\) (ĐPCM)
cho x,y,z là các số thực dương thỏa xy+yz+xz=1 c/m x^3+y^3+z^3>=1/căn 3
Cho x, y, z là các số thực dương và thỏa mãn: x+y+z=xyz. Tìm GTLN của biểu thức: \(P=\dfrac{1}{\sqrt{1+x^2}}+\dfrac{1}{\sqrt{1+y^2}}+\dfrac{1}{\sqrt{1+z^2}}\)
Cho x, y, z là các số thực dương và thỏa mãn: x+y+z=xyz. Tìm GTLN của biểu thức: \(P=\dfrac{1}{\sqrt{1+x^2}}+\dfrac{1}{\sqrt{1+y^2}}+\dfrac{1}{\sqrt{1+z^2}}\)
cho x,y,z là các số thực dương thỏa mãn x+y+z=xyz.CMR
\(\dfrac{x}{1+x^2}+\dfrac{2y}{1+y^2}+\dfrac{3z}{1+z^2}=\dfrac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
cho các số thực dương x,y,z thỏa mãn x + y + z = 3 . chứng minh rằng: 1/(sqrt(xy + x + y)) + 1/(sqrt(yz + y + z)) + 1/(sqrt(zx + z + x)) >= sqrt(3)
Ta cần chứng minh:\(\dfrac{1}{\sqrt{x+y+xy}}+\dfrac{1}{\sqrt{y+z+yz}}+\dfrac{1}{\sqrt{z+x+zx}}\ge\sqrt{3}\)
Áp dụng bất đẳng thức Bunhiacopxki, ta được:
\(\dfrac{1}{\sqrt{x+y+xy}}+\dfrac{1}{\sqrt{y+z+yz}}+\dfrac{1}{\sqrt{z+x+zx}}\ge\dfrac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\)
Mặt khác, ta có:
\(\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2\le3\left(\left(x+y+xy\right)+\left(y+z+yz\right)+\left(z+x+zx\right)\right)\)
\(\Leftrightarrow\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2\le3\left(6+xy+yz+zx\right)\)Lại có:
\(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{9}{3}=3\)
\(\Rightarrow\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2\le3\left(6+3\right)=27\)
\(\Rightarrow\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\le3\sqrt{3}\)
\(\Rightarrow\dfrac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\ge\dfrac{9}{3\sqrt{3}}=\sqrt{3}\)
Do đó \(\dfrac{1}{\sqrt{x+y+xy}}+\dfrac{1}{\sqrt{y+z+yz}}+\dfrac{1}{\sqrt{z+x+zx}}\ge\sqrt{3}\)
Dấu bằng xảy ra \(\Leftrightarrow x=y=z=1\).