Số nghiệm của phương trình 2 x 2 - 2 x 2 - 3 x 2 - 2 x + 1 = 0 là
A. 1
B. 2
C. 3
D. 4
cho phương trình ẩn x: \(9x^2-25-k^2-2kx=0\)
a,Giải phương trình với k=0
b,Tìm các giá trị của k sao cho phương trình nhận x=-1 làm nghiệm số
thay k=0 vào pt ta được
\(9x^2-25-0^2-2.0x=0\)
=>\(9x^2-25=0\)
=>\(\left(3x-5\right)\left(3x+5\right)=0\)
=>\(3x+5=0=>x=\dfrac{-5}{3}\)
hoặc \(3x-5=0=>x=\dfrac{5}{3}\)
cho phương trình ẩn x: \(9x^2-25-k^2-2kx=0\)
a,Giải phương trình với k=0
b,Tìm các giá trị của k sao cho phương trình nhận x=-1 làm nghiệm số
Thay `k=0` vào pt ta có:
`9x^2-25-0-0=0`
`<=>9x^2=25`
`<=>x^2=25/9`
`<=>x=+-5/3`
`b)x=-1` làm nghiệm nên ta thay `x=-1` vào pt thì pt =0
`=>9.1-25-k^2-2k(-1)=0`
`<=>-16-k^2+2k=0`
`<=>k^2-2k+16=0`
`<=>(k-1)^2+15=0` vô lý
Vậy khong có giá trị của k thỏa mãn đề bài
Cho phương trình : x2 - 2 (m - 2)x - 2m = 0 ( x là ẩn số ).
a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân biệt x1, x2 .
b) Tìm giá trị của m để 2 nghiệm của phương trình thoả hệ thức x2 - x1 = x12
a) Ta xét :
\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)
Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.
b) Dễ thấy : x1<x2 nên ta có :
\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)
\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)
\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)
\(\Leftrightarrow m=2\)
Vậy m = 2
Cho bất phương trình: m x 2 + 2 ( m - 1 ) x + m + 2 < 0 . Điều kiện của tham số m để bất phương trình đã cho vô nghiệm là
A. m > 0
B. m ≤ 0
C. m ≥ 1 4
D. m ≤ 1 4
+ Khi m = 0, bất phương trình trở thành - 2 x + 2 < 0 ⇔ x > 1 . Vậy m = 0 không thỏa mãn yêu cầu của bài toán.
+ Khi m ≠ 0 , bất phương trình vô nghiệm khi m x 2 + 2 m - 1 x + m + 2 ≥ 0 , ∀ x ∈ ℝ . ⇔ a > 0 ∆ ' ≤ 0 ⇔ m > 0 ( m - 1 ) 2 - m ( m + 2 ) ≤ 0 .
⇔ m > 0 - 4 m + 1 ≤ 0 ⇔ m > 0 m ≥ 1 4 ⇔ m ≥ 1 4
Chọn C.
C1: Phương trình x + 1/x-1= 2x-1/x-1 có bao nhiêu nghiệm A vô số nghiệm B 1 C 0 D 2 C2: nghiệm của phương trình 3x+3/x^2-1 +4/x-1 =3 là A -1 hoặc 10/3 B -1 C -10/3 D 1 hoặc -10/3
Điều kiện của tham số m để phương trình m - 1 x + 6 + x + 2 = 0 có nghiệm là
A. m = 4
B. m ≠ 4
C. m = -2
D. m ≠ - 2
Ta có: m - 1 x + 6 ≥ 0 ; x + 2 ≥ 0 . Do đó,
m - 1 x + 6 + x + 2 = 0 ⇔ m - 1 x + 6 = 0 x + 2 = 0 ⇔ m - 1 . - 2 + 6 = 0 x = - 2 ⇔ - 2 m + 2 + 6 = 0 x = - 2 ⇔ m = 4 x = - 2
Chọn A.
Số nghiệm thực của hệ phương trình \(\left\{{}\begin{matrix}3x^2-4xy+y^2=0\\x^2+2y=8\end{matrix}\right.\) là:
Lời giải:
$3x^2-4xy+y^2=0$
$\Leftrightarrow 3x(x-y)-y(x-y)=0$
$\Leftrightarrow (x-y)(3x-y)=0$
$\Rightarrow x-y=0$ hoặc $3x-y=0$
Nếu $x-y=0\Leftrightarrow x=y$. Thay vào pt $(2)$:
$x^2+2x=8$
$\Leftrightarrow x^2+2x-8=0$
$\Leftrightarrow (x-2)(x+4)=0$
$\Rightarrow x=2$ hoặc $x=-4$.
Vậy hpt có nghiệm $(x,y)=(2,2); (-4,-4)$
Nếu $3x-y=0$
$\Leftrightarrow 3x=y$. Thay vô pt $(2)$:
$x^2+6x=8$
$\Leftrightarrow x^2+6x-8=0$
$\Rightarrow x=-3\pm \sqrt{17}$
$\Rightarrow y=3(-3\pm \sqrt{17})$ (tương ứng)
Vậy tổng cộng hpt có 4 nghiệm $(x,y)$ thực.
Tìm số b và nghiệm thứ hai của các phương trình
a,x2-5x+b=0,Nếu có một nghiệm x=5
b,x2+bx-15=0 ,Nếu có 1 nghiệm x=3
a) Thay x = 5 vào thì phương trình trở thành \(5^2-5.5+b=0\)
\(\Rightarrow25-25+b=0\Rightarrow b=0\)
Lúc đó phương trình trở thành \(x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
Dễ dàng suy ra nghiệm còn lại của phương trình là 0
b) Thay x = 3 vào thì phương trình trở thành \(3^2+3b-15=0\)
\(\Rightarrow3b-6=0\Leftrightarrow b=2\)
Lúc đó phương trình trở thành \(x^2+2x-15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
Dễ dàng suy ra nghiệm còn lại của phương trình là -5
a) Vì \(x=5\)là 1 nghiệm của phương trình
\(\Rightarrow\)Thay \(x=5\)vào phương trình ta được:
\(5^2-5.5+b=0\)\(\Leftrightarrow25-25+b=0\)\(\Leftrightarrow b=0\)
Thay \(b=0\)vào phương trình ta được:
\(x^2-5x=0\)\(\Leftrightarrow x\left(x-5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Vậy \(b=0\)và nghiệm thứ 2 của phương trình là \(x=0\)
b) Vì \(x=3\)là 1 nghiệm của phương trình
\(\Rightarrow\)Thay \(x=3\)vào phương trình ta được:
\(3^2+3b-15=0\)\(\Leftrightarrow9+3b-15=0\)
\(\Leftrightarrow3x-6=0\)\(\Leftrightarrow3b=6\)\(\Leftrightarrow b=2\)
Thay \(b=2\)vào phương trình ta được:
\(x^2+2x-15=0\)\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy \(b=2\)và nghiệm thứ 2 của phương trình là \(x=-5\)
Tất cả các giá trị của tham số m để hệ phương trình x - y = m x 2 - x y - m - 2 = 0 có nghiệm là
A. m = 0
B. m ≠ 0
C. m = 2
D. m ≠ 2
x - y = m ( 1 ) x 2 - x y - m - 2 = 0 ( 2 )
Từ (1), ta có y = x - m , thế vào (2) ta được phương trình:
x2 – x (x- m) – m - 2= 0 ⇔ x2 – x2 + mx –m –2 = 0
hay mx –m -2 = 0 (*) .
Hệ phương trình đã cho có nghiệm khi phương trình (*) có nghiệm ⇔ m ≠ 0 .
Chọn B.
Với giá trị nào của số nguyên k , các nghiệm của phương trình sau là các số hữu tì :
\(kx^2+\left(2k-1\right)x+k-2=0\) .