Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hồng Nhân
Xem chi tiết
Vy Võ
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 22:37

Ta có: \(G=\left(\dfrac{x-\sqrt{x}+2}{x-1}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\dfrac{x+2\sqrt{x}+1}{2x-2\sqrt{x}}\)

\(=\dfrac{x-\sqrt{x}+2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

Đỗ Vũ Nhật Minh
Xem chi tiết
๒ạςђ ภђเêภ♕
23 tháng 7 2021 lúc 20:46

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H

Khách vãng lai đã xóa
Trương Nguyên Đại Thắng
Xem chi tiết
Lan hương
1 tháng 8 2019 lúc 16:07

Ôn tập Căn bậc hai. Căn bậc ba

Nguyễn Thanh Thảo
Xem chi tiết
Quân Nguyễn Anh
Xem chi tiết
L.A.Đ.H L(*OεV*)E(灬♥ω♥...
Xem chi tiết
Ng Linhhh
Xem chi tiết
Akai Haruma
26 tháng 12 2022 lúc 12:54

Bài 1:

1.

$A=(x-2)^2+6x+5=x^2-4x+4+6x+5=x^2+2x+9$

2.

$B=\frac{15x^2y^3}{5x^2y^2}-\frac{10x^3y^2}{5x^2y^2}+\frac{5x^2y^2}{5x^2y^2}$

$=3y-2x+1$

 

Akai Haruma
26 tháng 12 2022 lúc 13:08

Bài 3:
$f(x)=x+4x^2-5x+3=4x^2-4x+3=4x(x-3)+8(x-3)+27$

$=(x-3)(4x+8)+27=g(x)(4x+8)+27$

Vậy $f(x):g(x)$ có thương là $4x+8$ và dư là $27$

Patepippip
Xem chi tiết
Hà Việt Hưng
Xem chi tiết