Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Minh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2018 lúc 7:57

a) * Nếu M ≥ a ⇔ 1 M ≤ 1 a ;

    * Nếu M ≤ a ⇔ 1 M ≥ 1 a ;

b) Ta có x 2 - 4x + 12 = ( x   -   2 ) 2  + 8 8 hay 1 x 2 + 2 x + 11 ≤ 1 10 ⇒ N ≥ − 1 2  

Giá trị nhỏ nhất của N = − 1 2  khi x = -1.

Trần Đỗ Bảo Khánh
Xem chi tiết
Trần Đỗ Bảo Khánh
27 tháng 2 2020 lúc 16:27

ai giải giúp mình bài này với mình đang cần gấp.

Khách vãng lai đã xóa
Ms. Yugi
Xem chi tiết
.
19 tháng 7 2020 lúc 15:00

Bài 1.

a.Ta có: (x - 1)2  ≥ 0 với mọi x ∈ Z

=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z

Dấu "=" xảy ra khi (x - 1)2 = 0

=> x - 1 = 0

=> x = 1

Vậy GTNN của A là 12 tại x = 1.

b. Có: |x + 3| ≥ 0 với mọi x ∈ Z

=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z

Dấu "=" xảy ra khi |x + 3| = 0

=> x + 3 = 0

=> x = -3

Vậy GTNN của B là 2020 tại x = -3.

Bài 2.

Có: |3 - x| ≥ 0 với mọi x ∈ Z

=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z

Dấu "=" xảy ra khi |3 - x| = 0

=> 3 - x = 0

=> x = 3

Vậy GTLN của Q là 20 tại x = 3.

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
19 tháng 7 2020 lúc 15:33

1. A = ( x - 1 )2 + 12

\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)

Dấu = xảy ra <=> x - 1 = 0 => x = 1

Vậy AMin = 12 khi x = 1

B = | x + 3 | + 2020

\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)

Dấu = xảy ra <=> x + 3 = 0 => x = -3

Vậy BMin = 2020 khi x = -3 

2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )

Q = 20 - | 3 - x | 

\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)

=> \(20-\left|3-x\right|\le20\forall x\)

Dấu = xảy ra <=> 3 - x = 0 => x = 3

Vậy QMax = 20 khi x = 3 

Khách vãng lai đã xóa
ミ★Ƙαї★彡
19 tháng 7 2020 lúc 15:35

a,  \(A=\left(x-1\right)^2+12\)

Ta có : \(\left(x-1\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x-1\right)^2+12\ge12\)

Dấu ''='' xảy ra <=> x - 1 = 0 <=> x = 1 

Vậy GTNN của A là 12 tại x = 1 

b, \(B=\left|x+3\right|+2020\)

Ta có \(\left|x+3\right|\ge0\forall x\in Z\)

\(\Rightarrow\left|x+3\right|+2020\ge2020\)

Dấu ''='' xảy ra <=> x + 3 = 0 <=> x = -3

Vậy GTNN của B là 2020 tại x = -3 

Bài 2 tương tự 

Khách vãng lai đã xóa
Phạm Khánh Vy
Xem chi tiết
Nguyễn Đức Trí
11 tháng 7 2023 lúc 22:00

a) \(A=\dfrac{3}{x-1}\)

Điều kiện \(|x-1|\ge0\)

\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)

\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)

b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)

 

minh thư
Xem chi tiết
Vũ king
Xem chi tiết
Trần Công Mạnh
30 tháng 10 2021 lúc 19:37

Giải

Ta có: \(A\left(x\right)=4x^2+6x+10\)

\(\Rightarrow A\left(x\right)=4x^2+4.\frac{3}{2}x+4.\frac{5}{2}\)(Biến tất cả các hạng tử sao cho có nhân tử chung là 4 để làm mất hệ số 4 ở x^2)

\(\Rightarrow A\left(x\right)=4\left(x^2+\frac{3}{2}x+\frac{5}{2}\right)\)(Đấy, thấy số 4 đã ra ngoài chưa)

\(\Rightarrow A\left(x\right)=4\left(x^2+2.\frac{3}{4}x+\frac{9}{16}+\frac{31}{16}\right)\)

(Giờ đây ta lại biến đổi sao cho có hằng đẳng thức và mình đã tách 5/2 thành 9/16 + 31/16)

\(\Rightarrow A\left(x\right)=4\left\{\left[x^2+2.\frac{3}{4}x+\left(\frac{3}{4}\right)^2\right]+\frac{31}{16}\right\}\)(Cho vào trong ngoặc dễ thấy đc hằng đẳng thức)

\(\Rightarrow A\left(x\right)=4\left[\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\right]\)(Đã sử dụng hằng đẳng thức \(A^2+2AB+B^2=\left(A+B\right)^2\))

Vì \(\left(x+\frac{3}{4}\right)^2\ge0\)(đây là điều hiển nhiên, bình phương của một số luôn lớn hơn hoặc bằng 0)

Nên \(\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\ge\frac{31}{16}\)

\(\Rightarrow A\left(x\right)=4\left[\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\right]\ge\frac{31}{4}\)(Nhân thêm 4 vào cả hai vế)

[A(x) sẽ nhỏ nhất nếu dấu lớn hơn hoặc bằng chuyển thành dấu bằng)]

Dấu "=" xảy ra khi và chỉ khi \(\left(x+\frac{3}{4}\right)^2=0\Leftrightarrow x+\frac{3}{4}=0\Leftrightarrow x=-\frac{3}{4}\)

\(\text{Vậy giá trị nhỏ nhất của A(x) là } \dfrac{31}4 \text{khi và chỉ khi } x=-\dfrac34 \)

Khách vãng lai đã xóa
Hoàng
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 16:11

\(P=2016+\sqrt{\left(2x-1\right)^2+4}\ge2016+\sqrt{4}=2018\)

Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

An Thy
30 tháng 7 2021 lúc 16:11

Ta có: \(4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

\(\Rightarrow\sqrt{4x^2-4x+5}\ge2\Rightarrow P\ge2016+2=2018\)

\(\Rightarrow P_{min}=2018\) khi \(x=\dfrac{1}{2}\)

Phạm Anh
Xem chi tiết
Nguyễn Linh Chi
8 tháng 7 2019 lúc 14:19

Biểu thức:

\(A=\frac{2020-x}{6-x}=\frac{2014+6-x}{6-x}=\frac{2014}{6-x}+1\)

Để A đạt giá trị lớn nhất:

thì \(\frac{2014}{6-x}\)đạt giá trị lớn nhất

<=> \(\frac{2014}{6-x}>0\) và \(6-x\)đạt giá trị bé nhất

=> \(6-x=1\Leftrightarrow x=5\)

Lúc đó A đạt giá trị lớn nhất là: \(maxA=\frac{2014}{6-5}+1=2015\)

Lê Thạch
27 tháng 3 2020 lúc 21:09

bài này lớp 7 nha bn

Khách vãng lai đã xóa