Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
FBT Anime
Xem chi tiết
FBT Anime
Xem chi tiết
Nguyễn Văn Tuấn Anh
7 tháng 7 2019 lúc 9:28

Vì \(x^2+y^2=1\) 

=> \(x\in\left\{1;-1\right\}\) ; \(y\in\left\{1;-1\right\}\) 

MÀ \(\sqrt{4+5x}+\sqrt{4+5y}\ge0\forall x;y\) 

\(\Rightarrow x=1;y=1\) 

Thay Vào B=\(\sqrt{4+5}+\sqrt{4+5}=3+3=9\) 

Vậy...

Thị Kim Vĩnh Bùi
Xem chi tiết
Nguyên Khánh
Xem chi tiết
Vua Namek
Xem chi tiết
Đào Tùng Dương
Xem chi tiết
Đào Thu Hoà
Xem chi tiết
Đậu Đậu
14 tháng 6 2019 lúc 17:45

Mình nghĩ là làm như này nè:
Dễ cm:
+: \(\left(a+b\right)^2\le\)\(2\left(a^2+b^2\right)\)(với mọi a, b) ... Áp dụng => \(\left(x+y\right)^2\le\)\(2\)<=> \(-\sqrt{2}\le x+y\)\(\le\sqrt{2}\)
+: \(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)\(\le\sqrt{2\left(a+b\right)}\)(Cái đầu dùng tương đương còn cái hai dùng bđt BCS)
ÁP dụng =>\(\sqrt{8-5\sqrt{2}}\le\) \(\sqrt{8+5\left(x+y\right)}\le\)\(T\)\(\le\sqrt{16+10\left(x+y\right)}\)\(\le\sqrt{16+10\sqrt{2}}\)
Dấu "=" <=> ...

Đào Thu Hòa 2
14 tháng 6 2019 lúc 18:06

Bạn @Đậu Đậu gì đó ơi, Bạn giải tới đó thì max=\(16+10\sqrt{2}\)thì mình hiểu rồi , còn min =??? ghi rõ hộ mình nhé

Đậu Đậu
14 tháng 6 2019 lúc 18:14

\(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)

<=> a+b \(\le a+b+2\sqrt{ab}\)<=> \(\sqrt{ab}\ge0\)ĐÚNG
Thì áp dụng thôi

Phan Trung Hiếu
Xem chi tiết
Thị Kim Vĩnh Bùi
Xem chi tiết
Akai Haruma
29 tháng 6 lúc 19:26

Lời giải:

Với những điều kiện đề cho, biểu thức P chỉ có max bạn nhé.

Áp dụng BĐT Bunhiacopxky:

\(P^2=(\sqrt{5x+4}+\sqrt{5y+4}+\sqrt{5z+4})^2\leq (5x+4+5y+4+5z+4)(1+1+1)\\ \Leftrightarrow P^2\leq 3[5(x+y+z)+12]=51\\ \Rightarrow P\leq \sqrt{51}\)

Vậy $P_{\max}=\sqrt{51}$.

Giá trị này đạt tại $x=y=z=\frac{1}{3}$