tìm x và y để biểu thức x^2 - 2xy + 6y^2 - 14x - 6y + 72 đạt GTNN
tìm x,y để biểu thức đạt GTNN và GTNN là bao nhiêu
L=y2 -2xy +3x2 +2y -14x +1949
Cho x và y thỏa mãn: x^2+2xy+6x+6y+2y^^2+8=0.
Tìm GTLN và GTNN của biểu thức E=x+y+2016
bài 1 phân tích đa thức thành nhân tử 2x^2-12x+18+2xy-6y
bài 2 tìm GTNN của biểu thức P=x^2+y^2-2x+6y+12
bài 1:= \(2x\left(x-3\right)-6\left(x-3\right)+2y\left(x-3\right)\)
=\(2\left(x-3\right)\left(x+y-3\right)\)
bài 2:P=\(x^2-2x+1+y^2+6y+9+2\)
P=\(\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
vậy Pmin=2 khi x=1 và y=-3
Tìm GTNN của F=y^2-2xy+3x^2+2y-14x+194x
E+x^2+4y^2-2xy-6y-10*(x-y)+32
Tìm x,y để P đạt GTNN \(P=3x^2+11y^2-2xy-2x+6y-1\)
Bài 1 Tìm cặp số (x;y) thỏa mãn biểu thức sau
2x^2+y^2-2xy-10x+6y+13=0
x^2+7y^2-4xy-2x-2y+4=0
11x^2+y^2-6xy-14x+2y+9=0
1:Tìm x,y để các biểu thức sau đạt min
A=1892-2x2-y2+2xy-10x+14y
B=2x2+y2-2xy-4x+2(x-y)-5
C=x2+4y2-2xy-6y-10(x-y)+32
A chỉ đạt max
B=(x^2+y^2+1-2xy+2x-2y)+(x^2-4x+4)-10
B=(x-y+1)^2+(x-2)^2-10\(\ge\)-10
C=((x^2+y^2-2xy)-10(x-y)+25)+3(y^2-2y+1)+4
C=(x-y-5)^2+3(y-1)^2+4\(\ge\)4
tìm gtnn của biểu thức
a/ x^2 + 2y^2+2xy +4x + 6y +19
b/2x^2+y^2+2xy-2y-4
c/4x^2 +2xy-4x+4xy-3
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Tìm x, y để P đạt gtnn: P = \(3x^2+11y^2-2xy-2x+6y-1\)
P=3x2+11y2-2xy-2x+6y-1=(x2+9y2-6xy)-2(x-3y)+1+2x2+2y2+4xy -2
=(x-3y-1)2+2(x+y)2-2\(\ge-2\)
MinP=-2 khi x=1/4 và y=-1/4