CMR:ƯCLN(2n+1,8n+6)=1(với mọi n thuộc N)
MỌI NGƯỜI GIẢI CHI TIẾT GIÙM MÌNH NHA
THANKS
Chứng minh rằng với mọi n thõa mãn n>1 thì
1/2< 1/ n + 1 + 1/ n + 2 + ...........+1/ 2n < 3/4
giải chi tiết giùm
Các bạn ơi giúp mình giải bài toán này nhé !
P/s: Nhớ giải chi tiết giùm mình nhé (Thanks!!!!)
a) chứng minh rằng với mọi số nguyên n thì :(n^2-3n+1)(n+2)-n^3+2 chia hết cho 5
b) chứng minh rằng với mọi số nguyên n thì: (6n+1)(n+5)-(3n+5)(2n-10) chia hết cho 2
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
CMR: n^2(n+1)+2n(n+1) luôn chia hết cho 6 với mọi số nguyên n
Giải chi tiết
n2 ( n + 1) +2n (n + 1 )
= n (n + 1 ) ( n + 2 )
Vì n ; n + 1 ; n + 2 là các số tự nhiên liên tiếp
\(\Rightarrow\) n ( n + 1 ) ( n + 2 ) chia hết cho 6
Vậy n2 ( n + 1 ) ( n + 2 ) luôn chia hết cho 6 với mọi giá trị của n
Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2)
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1)
Vậy ta được điều phải chứng minh
Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2)
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1
Vậy ta được điều phải chứng minh
Tìm n thuộc N sao cho n2-2n-22 thuộc Bội của n+3
~Mọi người giải nhanh giùm mình với~Cảm ơn <3
1)tìm m,n thuộc N sao cho:2m-2n=2016
2)tìm x,y biết:x2+xy=7 (với x,y thuộc N)
3)CMR:83.7+422-36 không chia hết cho 14
mọi người giải chi tiết giùm mình nha
Tìm n thuộc z để đa thức (2n^2 + n - 7) chia hết ( n - 2)
giải chi tiết giùm mình nha mình like cho nhanh lên
ta có : 2n^2 +n-7 chia hết cho n- 2
(2n^2 +n-7)-4n(n-2) chia hết cho n-2
2n^2+n-7 - 2n^ 2 -4 chia hết cho n-2
n-7 - 4 chia hết cho n-2
n-2-9 chia hết cho n-2
=> -9 chia hết cho n-2
=> n-2= -1;1;-3;3;-9;9
=> n= 1;3;-1;5;-7;11
chứng minh rằng:
a) (n+6)^2-(n-6)^2 chia hết cho 24 với mọi n thuộc Z
b) n^2+4n+3 chia hết cho 8 với mọi n thuộc Z
c) (n+3)^2-(n-1)^2 chia hết cho 8 với mọi
giải chi tiết,cảm ơn!
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
Tìm n thuộc z biết a)2n+17chia hết n-3
b) 3n+41chia hết 2n+1
Giải chi tiết giùm mình nha càng nhanh càng tốt
a)2n+17/n-3
=>(2n-6)+23/n-3
=>2(n-3)+23/n-3
=>2+23/n-3
=>23/n-3
=>(n-3)=Ư(23)={1;-1;23;-23}
n-3=1=>n=4
n-3=-1=>n=2
n-3=23=>n=26
n-3=-23=>n=-20
Còn câu B thì bạn tự làm nhé!
Chứng minh rằng phân số \(\dfrac{2n^2+n+1}{n}\) là phân số tối giản.
Giải chi tiết giùm mình với ạ, mình cảm ơn nhiều!!!!
A = \(\dfrac{2n^2+n+1}{n}\) ( n #0)
Gọi ước chung của ớn nhất của 2n2 + n + 1 và n là d
Ta có: \(\left\{{}\begin{matrix}2n^2+n+1⋮d\\n⋮d\end{matrix}\right.\) ⇒ 1 ⋮ d ⇒ d = 1
Vậy ước chung lớn nhất của 2n2 + n + 1 và n là 1
hay phân số \(\dfrac{2n^2+n+1}{n}\) là phân số tối giản ( đpcm)