Độ dài của các cạnh tam giác tỉ lệ với nhau theo 2;3;4. Hỏi các chiều cao tương ứng của tam giác đó tỉ lệ với nhau theo tỉ số nào
Độ dài các cạnh của 1 tam giác tỉ lệ với nhau theo 2 :3 :4. Hỏi các chiều cao tương ứng của tam giác đó tỉ lệ với nhau theo tỉ số nào ?
Cho tam giác vuông ABC, đường cao AH chia cạnh huyền thành 2 đoạn thẳng tỉ lệ với nhau theo tỉ lệ 4:3, tính độ dài các cạnh của tam giác biết 1 cạnh góc vuông của tam giác có độ dài là 14 cm
Cho biết độ dài các cạnh của một tam giác tỉ lệ với nhau theo 2;3;4. Hỏi các chièu cao tương ứng ủa tam giác đó tỉ lệ với nhau theo tỉ số nào?
1. Điền hạng tử thích hợp vào chố dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.
a) 16x2 + * .24xy + x
b) * - 42xy + 49y2
c) 25x2 + * + 81
d) 64x2 - * +9
2. Viết mỗi bt sau về dạng tổng hoặc hiệu hai bình phương
a) x2 + 10x + 26 + y2 + 2y
b) z2 - 6z + 5 - t2 - 4t
c) x2 - 2xy + 2y2 + 2y + 1
d) ( x + y + 4 )( x + y - 4 )
e) ( x + y - 6 )
Cho biết độ dài các cạnh của một tam giác tỉ lệ với nhau theo 2;3;4. Hỏi các chièu cao tương ứng ủa tam giác đó tỉ lệ với nhau theo tỉ số nào?
1. Điền hạng tử thích hợp vào chố dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.
a) 16x2 + * .24xy + x
b) * - 42xy + 49y2
c) 25x2 + * + 81
d) 64x2 - * +9
2. Viết mỗi bt sau về dạng tổng hoặc hiệu hai bình phương
a) x2 + 10x + 26 + y2 + 2y
b) z2 - 6z + 5 - t2 - 4t
c) x2 - 2xy + 2y2 + 2y + 1
d) ( x + y + 4 )( x + y - 4 )
e) ( x + y - 6 )
Bài 1: Đề như đã sửa thì cách giải như sau:
Trong Tam giác ABC
Có AM/AB = AN/AC
Suy ra: MN // BC .
Trong tam giác ABI
có
MK // BI do K thuộc MN
Do đó : MK/BI =AM/AB (1)
Tương tự trong tam giác AIC
Có NK// IC nên NK/IC = AN/AC (2)
Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB
Lại có IC = IB ( t/c trung tuyến)
nên NK = MK (ĐPCM)
Bài 2:
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a)
Từ A kẻ đường cao AH ( H thuộc BC).
b) Do tam giác ABC vuông tại A áp dụng pitago ta có
BC=căn(AB mũ 2 + AC mũ 2)= 20cm
d) Có S(ABC)= AB*AC/2= AH*BC/2
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm
c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức:
BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45)
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2)
Trừ vế với vế có:
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45)
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD.
400-40*DC= -112+................
Suy 128- 10*DC= Căn(2) * AD (3)
Thay (3) v ào (2): rính được DC = 80/7 cm;
BD= BC - DC= 60/7 cm;
a) Ta có S(ABD)=AH*BD/2
S(ADC)=AH*DC/2
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;
Cho biết độ dài các cạnh của một tam giác tỉ lệ với nhau theo 2;3;4. Hỏi các chièu cao tương ứng ủa tam giác đó tỉ lệ với nhau theo tỉ số nào?
Gọi các cạnh của tam giác lần lượt là a, b, c
Theo đề bài ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và a+b+c=45(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{â+b+c}{2+3+4}=\dfrac{45}{9}=5\)
=> a= 5.2= 10
=> b= 5.3= 15
=> c= 5.4=20
Vậy các cạnh của tam giác lần lượt là 10cm, 15cm, 20cm
Gọi các cạnh của tam giác lần lượt là a, b, c
Theo đề bài ta có:
a2=b3=c4a2=b3=c4 và a+b+c=45(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a2=b3=c4=â+b+c2+3+4=459=5a2=b3=c4=â+b+c2+3+4=459=5
=> a= 5.2= 10
=> b= 5.3= 15
=> c= 5.4=20
Vậy các cạnh của tam giác lần lượt là 10cm, 15cm, 20cm
Cho biết độ dài các cạnh của một tam giác tỉ lệ với nhau theo 2;3;4. Hỏi các chièu cao tương ứng ủa tam giác đó tỉ lệ với nhau theo tỉ số nào?
1. Điền hạng tử thích hợp vào chố dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.
a) 16x2 + * .24xy + x
b) * - 42xy + 49y2
c) 25x2 + * + 81
d) 64x2 - * +9
2. Viết mỗi bt sau về dạng tổng hoặc hiệu hai bình phương
a) x2 + 10x + 26 + y2 + 2y
b) z2 - 6z + 5 - t2 - 4t
c) x2 - 2xy + 2y2 + 2y + 1
d) ( x + y + 4 )( x + y - 4 )
e) ( x + y - 6 )
gọi 3 canh của tam giác là a,b,c
mà độ dài các cạnh của tam giác tỉ lệ với 2,3,4
suy ra a/2=b/3=c/4= a+b+c/2+3+4= 20
nên a/2= 20 suy ra a=40
b/3=20 suy ra b=60
c/4=20 suy ra c=80
vậy chiều cao tương ứng của tam giác tỉ lệ với nhau theo tỉ số 40,60,80
Bài 1: Đề như đã sửa thì cách giải như sau:
Trong Tam giác ABC
Có AM/AB = AN/AC
Suy ra: MN // BC .
Trong tam giác ABI
có
MK // BI do K thuộc MN
Do đó : MK/BI =AM/AB (1)
Tương tự trong tam giác AIC
Có NK// IC nên NK/IC = AN/AC (2)
Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB
Lại có IC = IB ( t/c trung tuyến)
nên NK = MK (ĐPCM)
Bài 2:
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a)
Từ A kẻ đường cao AH ( H thuộc BC).
b) Do tam giác ABC vuông tại A áp dụng pitago ta có
BC=căn(AB mũ 2 + AC mũ 2)= 20cm
d) Có S(ABC)= AB*AC/2= AH*BC/2
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm
c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức:
BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45)
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2)
Trừ vế với vế có:
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45)
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD.
400-40*DC= -112+................
Suy 128- 10*DC= Căn(2) * AD (3)
Thay (3) v ào (2): rính được DC = 80/7 cm;
BD= BC - DC= 60/7 cm;
a) Ta có S(ABD)=AH*BD/2
S(ADC)=AH*DC/2
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;
Cho biết độ dài các cạnh của một tam giác tỉ lệ với nhau theo 2;3;4. Hỏi các chièu cao tương ứng ủa tam giác đó tỉ lệ với nhau theo tỉ số nào?
độ dài các cạnh của 1 tam giác tỉ lệ với nhau như thế nào ? biết nếu cộng lần lượt độ dài từng 2 đường cao của tam giác đó thì các tổng này tỉ lệ theo 3;4;5
Gọi độ dài 3 cạnh của tam giác là a, b, c. Độ dài 3 đường cao tương ứng là x, y, z
Ta có x+y : y+z : x+z = 3 : 4 : 5
=> x+y / 3 = y+z / 4 = x+z / 5 = k
=> x + y = 3k
=> y + z = 4k
=> x + z = 5k
=> 2(x + y + z) = 12k
=> x + y + z = 6k
......................................
à 14 – x = 1 à x = 13 ; khi ®ã = 2000 à Plín nhÊt = 2001.
Gäi ®é dµi c¸c c¹nh tam gi¸c lµ a, b, c ; c¸c ®êng cao t¬ng øng víi c¸c c¹nh ®ã lµ ha , hb , hc .
Ta cã: (ha +hb) : ( hb + hc ) : ( ha + hc ) = 3 : 4 : 5
Hay: (ha +hb) = ( hb + hc ) =( ha + hc ) = k ,( víi k 0).
Suy ra: (ha +hb) = 3k ; ( hb + hc ) = 4k ; ( ha + hc ) = 5k .
Céng c¸c biÓu thøc trªn, ta cã: ha + hb + hc = 6k.
Tõ ®ã ta cã: ha = 2k ; hb =k ; hc = 3k.
MÆt kh¸c, gäi S lµ diÖn tÝch , ta cã:
a.ha = b.hb =c.hc
a.2k = b.k = c.3k
= =
Độ dài các cạnh của 1 tam giác tỉ lệ với nhau như thế nào, biết nếu cộng lần lượt độ dài từng 2 đường cao của tam giác đó thì các tổng này tỉ lệ theo 3:4:5?
http://olm.vn/hoi-dap/question/142755.html
Bạn vào đây tham khảo nhé