Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 2 2018 lúc 3:06

Giải bài 7 trang 107 sgk Đại số 11 | Để học tốt Toán 11

+ Xét tính tăng giảm.

Với mọi n ∈ N ta có:

Giải bài 7 trang 107 sgk Đại số 11 | Để học tốt Toán 11

⇒ un + 1 < un với mọi n ∈ N.

⇒ (un) là dãy số giảm.

+ Xét tính bị chặn.

un > 0 với mọi n.

⇒ (un) bị chặn dưới.

un ≤ u1 = √2 - 1 với mọi n

⇒ (un) bị chặn trên.

⇒ (un) bị chặn.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2017 lúc 3:38

Giải bài 7 trang 107 sgk Đại số 11 | Để học tốt Toán 11

⇒ un + 1 > un với mọi n ∈ N

⇒ (un) là dãy tăng.

+ Xét tính bị chặn:

(un) là dãy tăng

⇒ u1 = 2 < u2 < u3 < …< un ∀n ∈ N*

⇒ un ≥ 2 ∀n ∈ N*

⇒ (un) bị chặn dưới.

(un) không bị chặn trên.

⇒ un không bị chặn.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 9 2018 lúc 15:39

Ta có:  u n > 0   ∀ n ≥ 1

u n + 1 u n = n 2 + n + 1 ( n + 1 ) 2 + ( n + 1 ) + 1 = n 2 + n + 1 n 2 + 3 n + 3 < 1   ∀ n ∈ ℕ *

⇒ u n + 1 < u n   ∀ ≥ 1 ⇒  dãy ( u n )  là dãy số giảm.

Mặt khác: 0 < u n < 1 ⇒  dãy ( u n )  là dãy bị chặn.

Chọn đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 9 2019 lúc 5:00

Xét hiệu:  u n + 1 − u n = 2 n + 1 n + 4 − 2 n − 1 n + 3

= 2 n 2 + 7 n + 3 − 2 n 2 − 7 n + 4 n + 4 n + 3 = 7 n + 4 n + 3 > 0 ; ∀ n ∈ N *

Vậy: ( u n ) là dãy số tăng.

Ta có  u n = 2 n − 1 n + 3 = 2 ( n + 3 ) − 7 n + 3 = 2 − 7 n + 3

 Suy ra: ∀ n ∈ ℕ * , u n < 2  nên   ( u n )  bị chặn trên.

 Vì  ( u n ) là dãy số tăng ∀ n ∈ ℕ * , u 1 = 1 4 ≤ u n  nên  ( u n )  bị chặn dưới. Vậy  ( u n )  bị chặn.

Chọn đáp án C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2018 lúc 11:03

Chọn B.

Trước hết bằng quy nạp ta chứng minh: (un) 1 < un 2, n

Điều này đúng với n = 2, giả sử 1 < un < 2 ta có:  nên ta có đpcm.

.

Vậy dãy (un) là dãy giảm và bị chặn.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 6 2018 lúc 8:41

Đáp án C

Khoa Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 19:57

\(u_n=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{n\left(n+1\right)}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(=1-\dfrac{1}{n+1}< 1\)

=>Hàm số bị chặn trên tại \(u_n=1\)

\(n+1>=1\)

=>\(\dfrac{1}{n+1}< =1\)

=>\(-\dfrac{1}{n+1}>=-1\)

=>\(1-\dfrac{1}{n+1}>=-1+1=0\)

=>Hàm số bị chặn dưới tại 0

\(u_n=1-\dfrac{1}{n+1}=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\)

\(\dfrac{u_n}{u_{n+1}}=\dfrac{n}{n+1}:\dfrac{n+1}{n+2}=\dfrac{n^2+2n}{n^2+2n+1}< 1\)

=>(un) là dãy số tăng

 

Kim ngân
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2022 lúc 22:22

\(u_n=\dfrac{1}{n+1}\Rightarrow u_{n+1}=\dfrac{1}{n+2}\)

\(\Rightarrow u_n-u_{n+1}=\dfrac{1}{n+1}-\dfrac{1}{n+2}=\dfrac{1}{\left(n+1\right)\left(n+2\right)}>0\)

\(\Rightarrow u_{n+1}< u_n\Rightarrow\) dãy giảm

Do \(\dfrac{1}{n+1}>0\Rightarrow\) dãy bị chặn dưới bởi 0

\(u_n-1=\dfrac{1}{n+1}-1=-\dfrac{n}{n+1}< 0\Rightarrow u_n< 1\)

\(\Rightarrow\) Dãy bị chặn trên bởi 1

\(\Rightarrow\) Dãy bị chặn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 7 2017 lúc 13:07

Chọn A.

Trước hết ta chứng minh 1 < un < 4

Điều này hiển nhiên đúng với n = 1.

Giả sử 1 < un < 4, ta có: 

Ta chứng minh (un) là dãy tăng

Ta có u1 < u2, giả sử un-1 < un, n ≤ k.

Khi đó: 

Vậy dãy (un)  là dãy tăng và bị chặn.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 6 2018 lúc 4:12

Đáp án B

Ta có

u n + 1 = 1 + 1 2 2 + 1 3 2 + ... + 1 n 2 + 1 n + 1 2 = u n + 1 n + 1 2 > u n ,

vậy dãy số đã cho là dãy số tăng.

Hơn nữa vì dãy số là tổng các số dương nên bị chặn dưới bởi 0, ta chỉ cần kiểm tra dãy số có bị chặn trên hay không là đủ để chọn phương án đúng.

Ta có

1 2 2 < 1 1.2 = 1 − 1 2 1 3 2 < 1 2.3 = 1 2 − 1 3 .......................... 1 n 2 < 1 n − 1 . n = 1 n − 1 − 1 n

Vì vậy u n < 2 − 1 n < 2 , do đó dãy số bị chặn trên.