tim a thuoc z
sao cho a.(a - 3)>0
1) Tim a, b thuoc Q biet: a-b=2(a+b)=a:b
2) Tim x thuoc Q sao cho: (x-1)(x+3)<0
Cho A = \(\frac{n-1}{n-3}\)(n Khac 0)
a) Tim n thuoc Z de A thuoc Z
b) Tim n thuoc Z de A co gia tri
a) n\(\in\){1;2;4;5}
b)n\(\ne3\)và n\(\in\)Z
k nha bạn
a)để A thuộc Z hay a là số nguyên
=>n-1 chia hết n-3
<=>(n-1)-2 chia hết n-3
=>2 chia hết n-3
=>n-3\(\in\){1,-1,2,-2}
=>n\(\in\){4,2,5,1}
b)vì mẫu số của ps luôn luôn\(\ne0\) =>n\(\ne\)3 và 0;n\(\in\)Z
cho M=(1+\(\frac{a}{a^2+1}\)) : (\(\frac{1}{a-1}\)- \(\frac{2a}{a^3-a^2+a-1}\))
tim a thuoc z de m thuoc z
tim a de m=7.tim a de m>0
ĐKXĐ bạn tự xét nhé
\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)
\(M=\left(\frac{a^2+1}{a^2+1}+\frac{a}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2-2a+1}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{\left(a-1\right)^2}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\frac{\left(a^2+a+1\right)\left(a^2+1\right)\left(a-1\right)}{\left(a^2+1\right)\left(a-1\right)^2}\)
\(M=\frac{a^2+a+1}{a-1}\)
Để M thuộc Z thì \(a^2+a+1⋮a-1\)
\(\Leftrightarrow a^2-a+2a-2+3⋮a-1\)
\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)+3⋮a-1\)
\(\Leftrightarrow\left(a-1\right)\left(a+2\right)+3⋮a-1\)
Mà \(\left(a-1\right)\left(a+2\right)⋮a-1\)
\(\Rightarrow3⋮a-1\)
\(\Rightarrow a-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow a\in\left\{2;4;0;-2\right\}\)
Để M = 7 thì :
\(\frac{a^2+a+1}{a-1}=7\)
\(\Leftrightarrow a^2+a+1=7\left(a-1\right)\)
\(\Leftrightarrow a^2+a+1=7a-7\)
\(\Leftrightarrow a^2-6a+8=0\)
\(\Leftrightarrow a^2-2a-4a+8=0\)
\(\Leftrightarrow a\left(a-2\right)-4\left(a-2\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-2=0\\a-4=0\end{cases}\Rightarrow\orbr{\begin{cases}a=2\\a=4\end{cases}}}\)
Để M > 0 thì :
\(\frac{a^2+a+1}{a-1}>0\)
Vì \(a^2+a+1>0\forall a\), do đó để M > 0 thì : \(a-1>0\Leftrightarrow a>1\)
Chứng minh \(a^2+a+1>0\):
Đặt \(B=a^2+a+1\)
\(B=a^2+2\cdot a\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(B=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)
\(\Rightarrow B\ge0+\frac{3}{4}=\frac{3}{4}>0\)
\(\Rightarrow B>0\left(đpcm\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a+\frac{1}{2}=0\Leftrightarrow a=\frac{-1}{2}\)
bai 2
a)chung to rang P=4a2+4a chia het cho 8 voi moi a thuoc z
b)tim a thuoc z sao cho Q=a+7 chia het cho a (a khac 0)
c)tim a thuoc z sao cho M=a+1 chia het a -2 (a khac 2)
Tim a,b thuoc Q sao cho a+b=a×b(b khac 0)
Ta có: a/b = ab => ab/b^2 = ab => b^2 = 1 => b = 1 hoặc -1
Với b = 1, a + b = a.b => a + 1 = a (vô lí)
Với b = - 1, a + b = ab => a -1 = -a => 2a = 1 => a = 1/2 (thỏa Đk)
Vậy cặp số hữu tỉ cần tìm là 1/2 và -1
cho A=n+3\n-2 (n thuoc Z)
a) tim n de A la phan so
b) tim n de A thuoc Z
c) tim n biet A=-4
cho A= { 8; 45}
B={ 15; 4}
a) tim tap hop C cac so tu nhien x= a+b sao cho a thuoc A va b thuoc B
b) tim tap hpo D cac so tu nhien x = a-b sao cho a thuoc A va b thuoc B
c) tim tap hop E cac so tu nhien x = a.b sao cho a thuoc A va b thuoc B
d) tim tap hop G cac so tu nhien x sao cho a=b.x va a thuoc A; b thuoc B
làm đầy đủ nha
1) Cho (α): 2x+y-z+3 = 0 va A(1;1;1), B(2;0;-1). Tim M thuoc (α) sao cho MA + MB nho nhat
Thay tọa độ A và B vào pt \(\left(\alpha\right)\) ra 2 kết quả cùng dấu, do đó A và B nằm cùng phía so với \(\left(\alpha\right)\)
Gọi (d) là đường qua A và vuông góc \(\left(\alpha\right)\), phương trình (d) có dạng:
\(\left\{{}\begin{matrix}x=1+2t\\y=1+t\\z=1-t\end{matrix}\right.\)
Gọi C là giao điểm (d) và \(\left(\alpha\right)\Rightarrow\) tọa độ C tỏa mãn:
\(2\left(1+2t\right)+1+t-\left(1-t\right)+3=0\Rightarrow t=-\dfrac{5}{6}\) \(\Rightarrow C\left(-\dfrac{2}{3};-\dfrac{1}{6};\dfrac{11}{6}\right)\)
Gọi D là điểm đối xứng A qua \(\left(\alpha\right)\Rightarrow\) C là trung điểm AD \(\Rightarrow D\left(-\dfrac{7}{3};-\dfrac{4}{3};\dfrac{8}{3}\right)\)
Do D đối xứng A qua \(\left(\alpha\right)\Rightarrow MA=MD\Rightarrow MA+MB=MD+MB\ge BD\)
Dấu = xảy ra khi B, D, M thẳng hàng hay M là giao của BD và \(\left(\alpha\right)\)
\(\overrightarrow{DB}=\left(\dfrac{13}{3};\dfrac{4}{3};-\dfrac{11}{3}\right)\Rightarrow\)BD nhận (13;4;-11) là 1 vtcp
Phương trình BD: \(\left\{{}\begin{matrix}x=2+13t\\y=4t\\z=-1-11t\end{matrix}\right.\)
\(\Rightarrow\) Tọa độ M thỏa mãn:
\(2\left(2+13t\right)+4t-\left(-1-11t\right)+3=0\Rightarrow t=-\dfrac{8}{41}\)
\(\Rightarrow M\left(-\dfrac{22}{41};-\dfrac{32}{41};\dfrac{47}{41}\right)\)
cho A=27a-37/4-5a.
a,tim a de A=2. b,Tim a thuoc Z de A thuoc Z. c,Tim a thuoc Z de A co gia tri lon nhat