S=1+2+22+23+...+22021
cho S=1+2+22+23+24+...+22021.Chứng tỏ bằng S chia hết cho 7
\(S=1+2+2^2+2^3+2^4+...+2^{2011}\)
\(\Rightarrow S=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2009}\left(1+2+2^2\right)\)
\(\Rightarrow S=7+2^3.7+...+2^{2009}.7\)
\(\Rightarrow S=7\left(1+2^3+...+2^{2009}\right)⋮7\)
\(\Rightarrow dpcm\)
A = 1 + 2+22 + 23 .....+22020, so sánh A với 22021
2A=2*(1+2+22+...+22020)=2+22+...+22021
2A-A=(1+2+22+...+22021)-(1+2+22+...+22020)
A=22021-1<2021
Giải:
A=1+2+22+23+...+22020
2A=2+22+23+24+...+22021
2A-A=(2+22+23+24+...+22021)-(1+2+22+23+...+22020)
A=22021-1
⇒A<22021
Chúc bạn học tốt!
1/2 + 1/22+1/23+...+1/22020+1/22021=?
mình đang gấp lắm, mong các bạn giải dùm
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)
\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)
\(\Rightarrow A-\dfrac{1}{2}A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^{2022}}\)
\(\Rightarrow\dfrac{1}{2}A=\dfrac{2^{2021}-1}{2^{2022}}\)
\(\Rightarrow A=\dfrac{2^{2021}-1}{2^{2023}}.2=\dfrac{2^{2021}-1}{2^{2021}}\)
Vậy \(A=\dfrac{2^{2021}-1}{2^{2021}}\)
Tìm dư của phép chia số A = 22021 + 22022 chia cho B = 1 + 2 + 22 + 23 +....+22016 + 22017
so sánh:
A=1/2+1/22+1/23+...+1/22020+1/22021 và B=1/3+1/4+1/5+13/60
A=1/2+1/22+1/23+...+1/22020+1/22021 > B=1/3+1/4+1/5+13/60
so sánh P và Q biết
1+2+22+23 + ....... +22021 và Q = 2022
\(2P=2+2^2+2^3+...+2^{2022}\)
\(\Leftrightarrow P=2^{2022}-1< Q\)
so sánh P và Q biết
1+2+22+23 + ....... +22021 và Q = 2022
\(2P=2+2^2+2^3+...+2^{2022}\)
\(\Leftrightarrow P< Q\)
M=1+2+22+23+24+…+22020+22021. Chững minh M chia hết cho 3.
Các bạn giúp mình với nha.Cảm ơn!
Cho A =2+22+23+.....+22020+22021+22022
CHỨNG TỎ rằng A chia hết cho3
\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)
Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)
nên \(A⋮3\).
\(Toru\)
A=(2+22)+22(2+22)+...+22020(2+22)
A= 6.1+22.6+...+22020.6
A=6(1+22+...+22020) chia hết cho 3
vậy A chia hết cho 3
A=(2+22)+(23+24)+(25+26)+.......+(22019+22020)+(22021+22022)
A=2.(1+2)+23.(1+2)+25.(1+2)+.......+22019.(1+2)+22021.(1+2)
A=2.3+23.3+25.3+.......+22019.3+22021.3
A=3.(2+23+25+........+22019+22021)
Vì 3⋮3⇒A⋮3