Trong các dãy số ( u n ) cho dưới đây, dãy số nào bị chặn dưới, bị chặn trên và bị chặn? u n = 2 n - n 2
Trong các dãy số ( u n ) cho dưới đây, dãy số nào bị chặn dưới, bị chặn trên và bị chặn? u n = n + 1 n
B ị c h ặ n d ư ớ i v ì u n ≥ 2 , ∀ n ∈ N ∗
Trong các dãy số ( u n ) cho dưới đây, dãy số nào bị chặn dưới, bị chặn trên và bị chặn? u n = n 2 - 4 n + 7
B ị c h ặ n d ư ớ i v ì u n ≥ 3 , ∀ n ∈ N ∗
Trong các dãy số ( u n ) cho dưới đây, dãy số nào bị chặn dưới, bị chặn trên và bị chặn? u n = 1 n 2 - 6 n + 11
B ị c h ặ n v ì 0 < u n ≤ 1 / 2 , ∀ n ∈ N ∗
Trong các dãy số u n sau, dãy nào bị chặn dưới, bị chặn trên và bị chặn? u n = sin n + cos n .
Trong các dãy số (un) sau, dãy nào bị chặn dưới, bị chặn trên và bị chặn? u n = 2 n 2 - 1
un = 2n2 – 1
+ Với n ∈ N* ta có: n ≥ 1 và n2 ≥ 1
⇒ un = 2n2 – 1 ≥ 2.12 – 1 = 1.
⇒ un ≥ 1
⇒ dãy (un) bị chặn dưới ∀n ∈ N*.
+ (un) không bị chặn trên vì không có số M nào thỏa mãn:
un = 2n2 – 1 ≤ M ∀n ∈N*.
Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.
Trong các dãy số u n sau, dãy nào bị chặn dưới, bị chặn trên và bị chặn? u n = 1 2 n 2 - 1
+ Ta có : 2n2 – 1 > 0 ∀ n ∈ N*
⇒ ∀ n ∈ N*.
⇒ (un) bị chặn dưới.
+ 2n2 – 1 ≥ 2.1 – 1 = 1
⇒ ∀ n ∈ N*
⇒ (un) bị chặn trên.
Vậy (un) bị chặn.
Trong các dãy số u n sau, dãy nào bị chặn dưới, bị chặn trên và bị chặn? u n = 1 n n + 2
Ta có : ∀ n ≥ 1.
⇒ (un) bị chặn dưới
∀ n ≥ 1.
⇒ (un) bị chặn trên.
Vậy (un) là dãy bị chặn.
Trong các dãy số \(\left( {{u_n}} \right)\) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) \({u_n} = n - 1\);
b) \({u_n} = \frac{{n + 1}}{{n + 2}}\);
c) \({u_n} = sin\;n\;\);
d) \({u_n} = {\left( { - 1} \right)^{n - 1}}{n^2}\).
a) Ta có: \(n \ge 1\; \Rightarrow n - 1 \ge 0\; \Rightarrow {u_n} \ge 0,\;\forall \;n \in {N^*}\;\)
Do đó, \(\left( {{u_n}} \right)\) bị chặn dưới bởi 0.
\(\left( {{u_n}} \right)\) không bị chặn trên vì không tồn tại số M nào để \(n - 1 < M,\;\forall \;n \in {N^*}\).
b) Ta có:
\(\begin{array}{l}\forall n \in {N^*},{u_n} = \frac{{n + 1}}{{n + 2}} > 0.\\{u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{n + 2 - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}} < 1,\forall n \in {N^*}\\ \Rightarrow 0 < {u_n} < 1\end{array}\)
Vậy \(\left( {{u_n}} \right)\) bị chặn.
c) Ta có:
\( - 1 < \sin n < 1\)
\( \Rightarrow - 1 < {u_n} < 1,\forall n \in {N^*}\)
Vậy \(\left( {{u_n}} \right)\) bị chặn.
d) Ta có:
Nếu n chẵn, \({u_n} = - {n^2} < 0\), \(\forall n \in {N^*}\).
Nếu n lẻ, \({u_n} = {n^2} > 0\), \(\forall n \in {N^*}\).
Vậy \(\left( {{u_n}} \right)\) không bị chặn.
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{n + 1}}{{n + 2}}\). Phát biểu nào sau đây đúng?
A. Dãy số tăng và bị chặn.
B. Dãy số giảm và bị chặn.
C. Dãy số giảm và bị chặn dưới.
D. Dãy số giảm và bị chặn trên.
• Ta có: \({u_{n + 1}} = \frac{{\left( {n + 1} \right) + 1}}{{\left( {n + 1} \right) + 2}} = \frac{{n + 1 + 1}}{{n + 1 + 2}} = \frac{{n + 2}}{{n + 3}}\)
Xét hiệu:
\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{n + 2}}{{n + 3}} - \frac{{n + 1}}{{n + 2}} = \frac{{{{\left( {n + 2} \right)}^2} - \left( {n + 1} \right)\left( {n + 3} \right)}}{{\left( {n + 3} \right)\left( {n + 2} \right)}} = \frac{{\left( {{n^2} + 4n + 4} \right) - \left( {{n^2} + n + 3n + 3} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{{n^2} + 4n + 4 - {n^2} - n - 3n - 3}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{1}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0,\forall n \in {\mathbb{N}^*}\end{array}\)
Vậy \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
• Ta có: \({u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{\left( {n + 2} \right) - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}}\)
\(\forall n \in {\mathbb{N}^*}\) ta có:
\(n + 2 > 0 \Leftrightarrow \frac{1}{{n + 2}} > 0 \Leftrightarrow 1 - \frac{1}{{n + 2}} < 1 \Leftrightarrow {u_n} < 1\). Vậy \(\left( {{u_n}} \right)\) bị chặn trên.
\(n \ge 1 \Leftrightarrow n + 2 \ge 1 + 2 \Leftrightarrow n + 2 \ge 3 \Leftrightarrow \frac{1}{{n + 2}} \le \frac{1}{3} \Leftrightarrow 1 - \frac{1}{{n + 2}} \ge 1 - \frac{1}{3} \Leftrightarrow {u_n} \ge \frac{2}{3}\)
Vậy \(\left( {{u_n}} \right)\) bị chặn dưới.
Ta thấy dãy số \(\left( {{u_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{u_n}} \right)\) bị chặn.
Chọn A.