Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 7 2018 lúc 17:53

B ị   c h ặ n   d ư ớ i   v ì   u n   ≥   2 ,   ∀ n   ∈   N ∗

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 12 2017 lúc 6:26

B ị   c h ặ n   d ư ớ i   v ì   u n   ≥   3 ,   ∀ n   ∈   N ∗

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 5 2017 lúc 9:43

B ị   c h ặ n   v ì   0   <   u n   ≤   1 / 2 ,   ∀ n   ∈   N ∗

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 7 2019 lúc 8:35

un = sin n + cos n.

Giải bài 5 trang 92 sgk Đại số 11 | Để học tốt Toán 11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 12 2017 lúc 6:45

un = 2n2 – 1

+ Với n ∈ N* ta có: n ≥ 1 và n2 ≥ 1

⇒ un = 2n2 – 1 ≥ 2.12 – 1 = 1.

⇒ un ≥ 1

⇒ dãy (un) bị chặn dưới ∀n ∈ N*.

+ (un) không bị chặn trên vì không có số M nào thỏa mãn:

un = 2n2 – 1 ≤ M ∀n ∈N*.

Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 10 2019 lúc 12:09

Giải bài 5 trang 92 sgk Đại số 11 | Để học tốt Toán 11

+ Ta có : 2n2 – 1 > 0 ∀ n ∈ N*

⇒ Giải bài 5 trang 92 sgk Đại số 11 | Để học tốt Toán 11 ∀ n ∈ N*.

⇒ (un) bị chặn dưới.

+ 2n2 – 1 ≥ 2.1 – 1 = 1

⇒ Giải bài 5 trang 92 sgk Đại số 11 | Để học tốt Toán 11 ∀ n ∈ N*

⇒ (un) bị chặn trên.

Vậy (un) bị chặn.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 7 2017 lúc 14:54

Ta có : Giải bài 5 trang 92 sgk Đại số 11 | Để học tốt Toán 11 ∀ n ≥ 1.

⇒ (un) bị chặn dưới

Giải bài 5 trang 92 sgk Đại số 11 | Để học tốt Toán 11 ∀ n ≥ 1.

⇒ (un) bị chặn trên.

Vậy (un) là dãy bị chặn.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:23

a) Ta có: \(n \ge 1\; \Rightarrow n - 1 \ge 0\; \Rightarrow {u_n} \ge 0,\;\forall \;n \in {N^*}\;\)

Do đó, \(\left( {{u_n}} \right)\) bị chặn dưới bởi 0.

\(\left( {{u_n}} \right)\) không bị chặn trên vì không tồn tại số M nào để \(n - 1 < M,\;\forall \;n \in {N^*}\).

b) Ta có:

\(\begin{array}{l}\forall n \in {N^*},{u_n} = \frac{{n + 1}}{{n + 2}} > 0.\\{u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{n + 2 - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}} < 1,\forall n \in {N^*}\\ \Rightarrow 0 < {u_n} < 1\end{array}\)

Vậy \(\left( {{u_n}} \right)\) bị chặn.

c) Ta có: 

\( - 1 < \sin n < 1\)

\( \Rightarrow  - 1 < {u_n} < 1,\forall n \in {N^*}\)

Vậy \(\left( {{u_n}} \right)\) bị chặn.

d) Ta có: 

Nếu n chẵn, \({u_n} =  - {n^2} < 0\), \(\forall n \in {N^*}\).

Nếu n lẻ, \({u_n} = {n^2} > 0\), \(\forall n \in {N^*}\).

Vậy \(\left( {{u_n}} \right)\) không bị chặn.

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 13:43

Chọn A

Quoc Tran Anh Le
22 tháng 9 2023 lúc 11:27

• Ta có: \({u_{n + 1}} = \frac{{\left( {n + 1} \right) + 1}}{{\left( {n + 1} \right) + 2}} = \frac{{n + 1 + 1}}{{n + 1 + 2}} = \frac{{n + 2}}{{n + 3}}\)

Xét hiệu:

\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{n + 2}}{{n + 3}} - \frac{{n + 1}}{{n + 2}} = \frac{{{{\left( {n + 2} \right)}^2} - \left( {n + 1} \right)\left( {n + 3} \right)}}{{\left( {n + 3} \right)\left( {n + 2} \right)}} = \frac{{\left( {{n^2} + 4n + 4} \right) - \left( {{n^2} + n + 3n + 3} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{{n^2} + 4n + 4 - {n^2} - n - 3n - 3}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{1}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0,\forall n \in {\mathbb{N}^*}\end{array}\)

Vậy \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.

• Ta có: \({u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{\left( {n + 2} \right) - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}}\)

\(\forall n \in {\mathbb{N}^*}\) ta có:

\(n + 2 > 0 \Leftrightarrow \frac{1}{{n + 2}} > 0 \Leftrightarrow 1 - \frac{1}{{n + 2}} < 1 \Leftrightarrow {u_n} < 1\). Vậy \(\left( {{u_n}} \right)\) bị chặn trên.

\(n \ge 1 \Leftrightarrow n + 2 \ge 1 + 2 \Leftrightarrow n + 2 \ge 3 \Leftrightarrow \frac{1}{{n + 2}} \le \frac{1}{3} \Leftrightarrow 1 - \frac{1}{{n + 2}} \ge 1 - \frac{1}{3} \Leftrightarrow {u_n} \ge \frac{2}{3}\)

Vậy \(\left( {{u_n}} \right)\) bị chặn dưới.

Ta thấy dãy số \(\left( {{u_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{u_n}} \right)\) bị chặn.

Chọn A.