Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên một khoảng.
a) Phát biểu định nghĩa nguyên hàm của hàm số \(f\left(x\right)\) trên một khoảng
b) Nêu phương pháp tính nguyên hàm từng phần. Cho ví dụ minh họa
Phát biểu định nghĩa tích phân của hàm số f(x) trên một đoạn.
Cho hàm số y = f(x) liên tục trên [a; b].
F(x) là một nguyên hàm của f(x) trên [a; b].
Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x)
Kí hiệu là
Cho các phát biểu sau:
I. Đồ thị hàm số có y = x4 – x + 2 có trục đối xứng là Oy.
II. Hàm số f(x) liên tục và có đạo hàm trên khoảng (a;b) đạt cực trị tại điểm x0 thuộc khoảng (a;b) thì tiếp tuyến tại điểm M(x0,f(x0)) song song với trục hoành.
III. Nếu f(x) nghịch biến trên khoảng (a;b) thì hàm số không có cực trị trên khoảng (a;b).
IV. Hàm số f(x) xác định và liên tục trên khoảng (a;b) và đạt cực tiểu tại điểm x0 thuộc khoảng (a;b) thì f(x) nghịch biến trên khoảng (a;x0) và đồng biến trên khoảng (x0;b).
Các phát biểu đúng là:
A. II,III,IV
B. I,II,III
C. III,IV
D. I,III,IV
Đáp án A.
Hàm số có y = x4 – x + 2 không là hàm số chẵn nên mệnh đề I sai.
Mệnh đề II, III, IV đúng
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
Cho F(x) là nguyên hàm của hàm số f(x) trên [a; b]. Phát biểu nào sau đây sai?
Chọn A
Vì tích phân không phục thuộc vào biến số
Cho hàm số f liên tục trên đoạn [a;b] có một nguyên hàm là hàm F trên đoạn [a;b]. Trong các phát biểu sau, phát biểu nào sai?
A. ∫ a b f x d x = F b - F a
B. F ' x = f x v ớ i m ọ i x ∈ a ; b
C. ∫ a b f x d x = f b - f a
D. Hàm số G cho bởi G ( x ) = F ( x ) + 5 cũng thỏa mãn ∫ a b f x d x = G b - G a
Biết rằng x e x là một nguyên hàm của hàm số f(-x) trên khoảng - ∞ , + ∞ . Gọi F(x) là một nguyên hàm của f ' x e x thỏa mãn F(0) =1, giá trị của F(-1) bằng:
A. 7 2
B. 5 - e 2
C. 7 - e 2
D. 5 2
Đáp án A
Phương pháp:
+) x e x là một nguyên hàm của hàm số nên x e x ' = f ( - x )
+) Từ f ( - x ) ⇒ f ( x )
+) F(x) là một nguyên hàm của f ' x e x ⇒ F ( x ) = ∫ f ' ( x ) e x d x
+) Tính F(x), từ đó tính F(-1)
Cách giải:
Vì x e x là một nguyên hàm của hàm số f ( - x ) nên x e x ' = f ( - x )
Cho hàm số y = f(x) có đạo hàm f ' x = x 2 x - 9 x - 4 2 . Xét hàm số y = g x = f x 2 trên R. Số phát biểu đúng trong các phát biểu sau là
I. Hàm số y = g x đồng biến trên khoảng 3 ; + ∞
II. Hàm số y = g x nghịch biến trên khoảng - ∞ ; - 3
III. Hàm số y = g x có 5 điểm cực trị
IV. m i n x ∈ ℝ g x = f 9
A. 1
B. 2
C. 3
D. 4
Cho hàm số f(x) liên tục trên khoảng (-2; 3). Gọi F(x) là một nguyên hàm của f(x) trên khoảng (-2; 3). Tính , biết F(-1) = 1, F(2) = 4.
A. I = 6.
B. I = 10.
C. I = 3.
D. I = 9.