Cho a < b, chứng minh: 3a + 1 < 3b + 1
cho a<b chứng minh 2-3a>1-3b
Ta có a<b
=>-3a>-3b
=>2-3a>2-3b(1)
mà 2-3b>1-3b(2)
Từ (1),(2)=>2-3a>1-3b
Cho a+b+c = 1 và 3a+2b>c, 3b+2c>a, 3c+2a>b. Chứng minh: 1/(3a+2b-c) + 1/(3b+2c-a) + 1/(3c+2a-b) >hoặc = 9/4
Cho a,b thuộc n* thỏa mãn 3a^2+a-b=4b^2 Chứng minh rằng a-b và 3a+3b+1 là số chính phương
Cho a,b,c>0 và abc=1. Chứng minh rằng:
\(\frac{2}{a^3b+a^3c}+\frac{2}{b^3a+b^3c}+\frac{2}{c^3a+c^3b}\ge3\)
cho a< b, chứng minh:
3a+1<3b+1
-2a-1>-2b-1
Từ a < b => 3a < 3b ( vì 3 >0 ) => 3a + 1 < 3b + 1.
Từ a < b => -2a > -2b ( vì -2 <0 ) => -2a + 1 > -2b +1.
Bài 1. Cho a < b. So sánh: a/ 2a và a + b b/ - 3a và - 3b c/ 2a và 2b
Bài 2. Cho a < b. Chứng tỏ : a/ 2a – 3 < 2b – 3 b/ 3a + 1 < 3b + 1
Bài 3. a/ Cho m > n . Chứng minh : 2m – 3 > 2n - 4
b/ Cho a < b . Chứng minh: 2a - 3 < 2b + 5
Cho a,b thỏa mãn 2a2 + a=3b2+b. Chứng minh rằng a-b và 3a+3b +1 là số chính phương
Có 2a^2 + a = 3b^2 + b
<=> 2a^2 + a - 3b^2 - b = 0
<=> 3a^2 + a - 3b^2 - b = a^2
Xét (a-b).(3a+3b+1) = 3a^2-3ab+3ab-3b^2+a-b = 3a^2-3b^2+a-b = a^2 là 1 số chính phương (1)
Gọi ƯCLN của a-b;3a+3b+1 là d ( d thuộc N sao )
=> a-b chia hết cho d
3a+3b+1 chia hết cho d
a^2 chia hết cho d^2
=> a-b chia hết cho d , 3a+3b +1 chia hết cho d , a chia hết cho d
=> a chia hết cho d , b chia hết cho d , 3a+3b+1 chia hết cho d
=> 1 chia hết cho d => d = 1 ( vì d thuộc N sao )
=> a-b và 3a+3b+1 nguyên tố cùng nhau (2)
Từ (1) và (2) => a-b và 3a+3b+1 đều là số chính phương
1. Cho \(a,b,c>0\) và \(ab+bc+ca=abc\). Chứng minh rằng:
\(\dfrac{1}{a+3b+2c}+\dfrac{1}{b+3c+2a}+\dfrac{1}{c+3a+2b}\le\dfrac{1}{6}\)
2. Cho \(a,b\ge0\) và \(a+b=2\) Tìm Max
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+20ab\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
2,
\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)
\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(ab=x\Rightarrow0\le x\le1\)
\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)
\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)
Cho a,b,c thỏa mãn: a+b+c=12. Chứng minh rằng: