Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
270741257
Xem chi tiết
Unirverse Sky
12 tháng 11 2021 lúc 16:44

a) có PM// CB (gt) => Góc APM  = Góc C = 90 độ
=> tam giác APM vuông
Tam giác ABC vuông cân tại C => góc A = Góc B = 45 độ
 Mà tam giác APM vuông có Góc A + góc AMP = 90 độ
=> Góc AMP= 45 độ = Góc A
=> Tam giác APM vuông cân tại P
=> AP = AM mà  AP = CQ ( gt)
=> PM= CQ
b) Có PM // CB ( gt) hay PM // CQ
TG PMQC có PM= QC
PM // QC
=> TG PMQC là Hình bình hành mà góc C= 90 độ
=> TG PMQC là hình chữ nhật 

Khách vãng lai đã xóa
Bùi Minh Chính
Xem chi tiết
09. Cao Ánh Dương
Xem chi tiết
meme
22 tháng 8 2023 lúc 20:32

Để chứng minh PCQM là hình chữ nhật, ta cần chứng minh 4 đỉnh P,, Q, M đều thuộc một đường thẳng và đường thẳng đó vuông góc với cả hai đường PQ và CM.Ta sẽ chứng minh từng bước như sau:Bước 1: Chứng minh P, C, Q thẳng hàngVì tam giác ABC vuông cân tại C và BM song song với BC, nên theo thuộc tính tam giác vuông cân và tam giác đồng dạng:- Ta có AC = BC (tam giác vuông cân)- Ta có BM || BC (theo giả thiết)- Ta có ∠ABC = ∠BAC (tam giác vuông cân)Do đó, tam giác ABC đồng dạng với tam giác BPC (theo góc). Từ đó, ta có:∠BPC = ∠ACB = 90° - ∠ABC = 90° - ∠BAC = ∠BCA (do tam giác vuông cân)Vậy ta có P, C,

Trần Hà My
Xem chi tiết
Girl Little
Xem chi tiết
Pé Ánh
Xem chi tiết
Nữ hoàng Elsa lửa
25 tháng 9 2018 lúc 23:00

Bài khá dài đó.

Sorry nhé mik mới lớp 6 ak nên ko bít, tha lỗi nha!

ý kiến gì thì nhắn tin cho mik mai 7g

pp, ngủ ngon!

Trần Thị Minh Châu
14 tháng 10 2019 lúc 14:31

Bạn Nữ hoàng Elsa lửa bn k biết thì đừng trả lời nhé

nguyenquocthanh
18 tháng 10 2019 lúc 21:00

làm j phải căng bn với nhau mà chơi cho hòa đồng và đừng có chảnh nhé

Khách vãng lai đã xóa
NHI NHi
Xem chi tiết
tth
Xem chi tiết
Nguyễn Ngô Minh Trí
30 tháng 3 2019 lúc 10:24

Các dạng toán về hình chữ nhật - Toán lớp 8-3

Ta có \displaystyle \Delta ABC vuông cân \displaystyle \Rightarrow \hat{A}={{45}^{0}}\Rightarrow \Delta APM vuông cân \displaystyle \Rightarrow AP=PM

Theo giải thiết \displaystyle AP=CQ\Rightarrow PM=CQ

Lại có \displaystyle PM//CQ\Rightarrow \diamond PMCQ là hình bình hành

Mặt khác \displaystyle \hat{C}={{90}^{0}}\Rightarrow \diamond PMCQ là hình chữ nhật

secret1234567
Xem chi tiết
Kiều Vũ Linh
20 tháng 10 2023 lúc 7:33

loading...   a) *) Chứng minh AMNB là hình bình hành:

Do O là giao điểm của AC và BD

Mà ABCD là hình bình hành (gt)

⇒ O là trung điểm của AC và BD

Do MN // AB (gt)

⇒ OM // CD

∆ACD có

O là trung điểm AC

OM // CD

⇒ M là trung điểm AD

⇒ AM = AD : 2   (1)

Do MN // AB (gt)

⇒ ON // AB

∆ABC có:

O là trung điểm AC (cmt)

ON // AB (cmt)

⇒ N là trung điểm BC

⇒ BN = BC : 2   (2)

Do ABCD là hình bình hành (gt)

⇒ AD // BC

⇒ AM // BN

Từ (1) và (2) ⇒ AM = BN

Tứ giác AMNB có:

AM // BN (cmt)

AM = BN (cmt)

⇒ AMNB là hình bình hành

*) Chứng minh APCQ là hình bình hành

Do ABCD là hình bình hành (gt)

⇒ AB // CD

⇒ AP // CQ

Tứ giác APCQ có:

AP // CQ (cmt)

AP = CQ (gt)

⇒ APCQ là hình bình hành

c) Do O là trung điểm AC (cmt)

M là trung điểm AD (cmt)

⇒ OM là đường trung bình của ∆ACD

⇒ OM = CD : 2   (3)

Do O là trung điểm AC (cmt)

N là trung điểm BC (cmt)

⇒ ON là đường trung bình của ∆ABC

⇒ ON = AB : 2

Mà AB = CD (do ABCD là hình bình hành)

⇒ OM = ON

⇒ O là trung điểm MN

Do APCQ là hình bình hành (cmt)

O là trung điểm AC (cmt)

⇒ O là trung điểm PQ

Tứ giác MPNQ có:

O là trung điểm MN (cmt)

O là trung điểm PQ (cmt)

⇒ MPNQ là hình bình hành

⇒ MP // NQ và MQ = NP